loading...
شیــمـی سـلــامـــی/ شیمی دبیرستان
آخرین ارسال های انجمن
nim بازدید : 91 جمعه 12 اردیبهشت 1393 نظرات (0)

بسم الله النور
اورانیم(Uranium)/نیما حاجیان/کلاس06/دبیرستان ملاصدرا1 اورانیم  یکی از عنصرهای شیمیایی است که عدد اتمی آن ۹۲ و نشانه آن U است و در جدول تناوبی جزو آکتنیدها قرار می‌گیرد. ایزوتوپ ‎۲۳۵U اورانیم در نیروگاه‌های انرژی هسته‌ای به عنوان سوخت و در سلاح‌های‌اتمی به عنوان ماده منفجره استفاده می‌شود.
اورانیم به طور طبیعی فلزی است سخت، سنگین، نقره‌ای رنگ و پرتوزا. این فلز کمی نرم تر از فولاد بوده و تقریبآ قابل انعطاف است. اورانیم یکی از چگالترین فلزات پرتوزا است که در طبیعت یافت می‌شود. چگالی آن ۶۵٪ بیشتر از سرب و کمی کمتر از طلا است.
سال‌ها از اورانیم به عنوان رنگ دهنده لعاب سفال یا برای تهیه رنگ‌های اولیه در عکاسی استفاده می‌شد و خاصیت پرتوزایی (رادیواکتیو) آن تا سال ۱۸۶۶ میلادی ناشناخته ماند و قابلیت آن برای استفاده به عنوان منبع انرژی تا اواسط قرن بیستم میلادی مخفی بود.
فراوانی
این عنصر از نظر فراوانی در میان عناصر طبیعی پوسته زمین در رده ۴۸ قراردارد.
اورانیم در طبیعت بصورت اکسید و یا نمک‌های مخلوط در مواد معدنی (مانند اورانیت یا کارونیت) یافت می‌شود. این نوع مواد اغلب از فوران آتشفشان‌ها بوجود می‌آیند و نسبت وجود آنها در زمین برابر دو در میلیون نسبت به سایر سنگها و مواد کانی است. اورانیم طبیعی شامل ‎۹۹/۳٪ از ایزوتوپ ‎۲۳۸U و ‎۰/۷٪ ‎۲۳۵U است.
این فلز در بسیاری از قسمت‌های دنیا در صخره‌ها، خاک و حتی اعماق دریا و اقیانوس‌ها وجود دارد. میزان وجود و پراکندگی آن از طلا، نقره یا جیوه بسیار بیشتر است.
در ایران بزرگترین منبع اورانیم مربوط به ساغند اردکان می باشد.

shimi2 بازدید : 790 پنجشنبه 11 اردیبهشت 1393 نظرات (0)

آلکانها

بعضی از ترکیبهای آلی ، فقط شامل دو عنصر هیدروژن و کربن می‌باشند و در نتیجه آنها را هیدروکربن می‌نامند. با تکیه بر ساختار ، هیدروکربنها را به دو گروه و طبقه اصلی یعنی آلیفاتیک و آروماتیک تقسیم می‌کنند. هیدروکربنهای آلیفاتیک خود به چند خانواده: آلکانها ، آکینها و همانندهای حلقوی آنها (سیکلوآلکانها و…) تقسیم می‌شوند. 

متان ، ساده ترین عضو خانواده آلکانها

متان ، CH4 ، ساده ترین عضو خانواده آلکانها و همچنین یکی از ساده ترین ترکیبهای آلی است. 


تصویر
آلکان

 

ساختار متان

هر یک از چهار اتم هیدروژن بوسیله پیوند کووالانسی ، یعنی با یک جفت الکترون اشتراکی به اتم کربن متصل شده است. وقتی کربن به چهار اتم دیگر متصل باشد، اوربیتالهای پیوندی آن (اوربیتالهای sp3 که از اختلاط یک اوربیتال s و سه اوربیتال p تشکیل شده‌اند) ، به سوی گوشه‌های چهار وجهی جهت گیری کرده‌اند.

این آرایش چهار وجهی ، آرایشی است که به اوربیتالها اجازه می‌دهد تا سر حد امکان از یکدیگر فاصله بگیرند. برای اینکه همپوشانی این اوربیتالها با اوربیتال کروی اتم هیدروژن به گونه ای موثر صورت پذیرد و در نتیجه ، پیوند محکم‌تری تشکیل شود، هر هسته هیدروژن باید در یک گوشه این چهار وجهی قرار بگیرد.

ساختار چهار وجهی متان بوسیله پراش الکترونی که آرایش اتمها را در این نوع مولکولهای ساده به روشنی نشان می‌دهد، تایید شده است. بعد شواهدی که شیمیدانها را خیلی پیش از پیدایش مکانیک کوانتومی REDIRECT (نام صفحه) یا پراش الکترونی d ، به پذیرش این ساختار چهار وجهی رهنمون شد، بررسی خواهیم کرد.

ما به طور معمول ، متان را با یک خط کوتاه برای نمایش هر جفت الکترون مشترک بین کربن و هیدروژن نشان خواهیم داد. برای آنکه توجه خود را بر روی الکترونها بطور انفرادی متمرکز کنیم، گاهی ممکن است یک جفت الکترون را بوسیله یک جفت نقطه نشان دهیم. سرانجام ، وقتی بخواهیم شکل واقعی مولکول را نمایش دهیم، از فرمولهای سه بعدی استفاده می‌کنیم. 

خواص فیزیکی متان

واحد ساختار این ترکیب غیر یونی ، مولکول است، چه جامد باشد، چه مایع و چه گاز. به علت اینکه مولکول متان بسیار متقارن است، قطبیتهای انفرادی پیوندهای کربن – هیدروژن ، یکدیگر را خنثی می‌کنند، در نتیجه کل مولکول غیر قطبی است. نیروهای جاذبه موجود میان این مولکولها غیر قطبی، به نیروهای واندروالسی محدود می‌شوند؛

این نیروهای جاذبه ، در مورد این مولکولهای کوچک ، باید در مقایه با نیروهای قدرتمند موجود بین مثلا یونهای سدیم و کلرید ضعیف باشند. بنابراین ، از اینکه به آسانی می‌توان بوسیله انرژی گرمایی ، بر این نیروهای جاذبه فایق آمد، بطوری‌که ذوب شدن و جوشیدن در دمای پایین صورت بگیرد، تعجب نخواهیم کرد: دمای ذوب در 183- درجه سانتی‌گراد و دمای جوش در 161,5- درجه سانتی‌گراد قرار دارد. (این مقادیر را با مقادیر مربوط در مورد سدیم کلرید: یعنی دمای ذوب 801 درجه سانتی‌گراد و دمای جوش 1413درجه سانتی‌گراد مقایسه کنید.) در نتیجه ، متان در دماهای معمولی یک گاز است.

متان ، بی‌رنگ است و وقتی مایع شود، سبکتر از آب است (چگالی نسبی آن 0,4 است). موافق با قاعده تجربی که می‌گوید: «هم‌جنس در هم‌جنس حل می‌شود» ، متان فقط کمی در آب انحلال پذیر است، ولی در مایعات آلی مانند بنزین ، اتر و الکل بسیار حل می‌شود. از نظر خواص فیزیکی ، متان الگویی برای سایر اعضا خانواده آلکانهاست. 

منبع متان

متان ، فرآورده پایانی تجزیه غیر هوازی (بدون هوا) گیاهان ، یعنی شکستن بعضی از مولکولهای بسیار پیچیده است. همچنین یکی از اجزاء اصلی (بیش از 97%) گاز طبیعی است. متان همان گاز قابل احتراق و منفجر شونده معادن زغال سنگ است و می‌توان خروج حبابهای آن را به عنوان گاز مرداب در سطح مردابها مشاهده کرد. اگر متان بسیار خالص لازم داشته باشیم، می‌توان آن را بوسیله تقطیر جزء به جزء از سایر اجزاء تشکیل دهنده گاز طبیعی (که بیشتر آلکانها هستند) جدا کرد.

البته بیشتر گاز طبیعی ، بدون خالص سازی ، به عنوان سوخت مصرف می‌شود. 

ساختار اتان

از نظر اندازه C2H6 بعد از متان قرار می‌گیرد. اگر اتمهای این مولکول را با رعایت قاعده ای که می‌گوید برای هیدروژن یک پیوند (یک جفت الکترون) و برای کربن ، چهار پیوند (چهاز جفت الکترون) ، بوسیله پیوندهای کووالانسی به یکدیگر متصل کنیم، به ساختار زیر دست می‌یابیم: CH3-CH3.

هر کربن به سه هیدروژن و یک کربن دیگر متصل است و چون هر اتم به چهار اتم دیگر متصل است، اوربیتالهای پیوندی ان (اوربیتالهای sp3) بهسوی گوشه‌های چهار وجهی جهت گرفته‌اند. در اینجا نیز مانند مورد متان ، پیوندهای کربن- هیدروژن از همپوشانی این اوربیتالهای sp3 با اوربیتالهای s هیدروژنها بوجود آمده‌اند. پیوند کربن- کربن از همپوشانی دو اوربیتال sp3 نتیجه شده است.

توزیع الکترونها در پیوندهای کربن- هیدروژن و کربن- کربن بطور کلی یکسان است، یعنی در حول خط متصل‌کننده هسته‌ها به هم ، حالتی استوانه‌ای و متقارن دارد: این پیوندها را به علت شکل مشابهی که دارند، پیوند σ (پیوند سیگما) می‌نامند. 
بنابراین ، زوایای پیوندی و طول پیوندهای کربن- هیدروژن باید خیلی شبیه به متان ، یعنی به ترتیب در حدود 109,5درجه و 1,1 آنگستروم باشند.

پراش الکترونی و بررسی‌های طیف‌بینی از هر نظر این ساختار را تایید کرده و برای مولکول اتان این اندازه‌ها را بدست داده‌اند. زوایای پیوندی 109,5 ، طول 1,1 برای C-H ، طول 1,53 برای C-C . بررسیهای مشابه نشان داده‌اند که این مقادیر ، با کمی انحراف ، از ویژگیهلی اختصاصی پیوندهای کربن- هیدروژن و کربن- کربن و زوایای پیوندی در آلکانها بشمار می‌روند. 


تصویر
ساختمان پروپان

 

خواص فیزیکی آلکانها

خواص فیزیکی آلکانها از همان الگوی خواص فیزیکی متان پیروی می‌کند و با ساختار آلکانها سازگار است. یک مولکول آلکان فقط بوسیله پیوندهای کووالانسی برپا نگه داشته شده است. این پیوندها یا دو اتم از یک نوع را بهم متصل می‌کنند و در نتیجه ، غیر قطبی‌اند، یا دو اتم را که تفاوت الکترونگاتیوی آنها بسیار کم است، به یکدیگر ربط می‌دهند و در نتیجه قطبیت آنها کم است. به علاوه ، این پیوندها به طریقی بسیار متقارن جهت گرفته‌اند، بطوری که این قطبیهای پیوندی نیز یکدیگر را خنثی می‌کنند.

در نتیجه یک مولکول آلکان یا غیر قطبی است یا قطبیت بسیار ضعیفی دارد. نیروهایی که مولکولهای غیر قطبی را گرد هم نگه می‌دارند (نیروهای واندروالسی) ضعیف هستند و گستره بسیار محدودی دارند. این نیروها فقط بین بخشهایی از مولکولهای مختلف که با یکدیگر در تماس نزدیک باشند، یعنی بین سطوح مولکولها ، عمل می‌کنند. بنابراین در یک خانوده معین ، انتظار داریم که هر اندازه مولکول بزرگتر باشد و در نتیجه سطح تماس آنها بیشتر باشد، نیروهای بین مولکولی نیز قوی‌تر باشند.

دمای جوش و ذوب با افزایش شمار اتمهای کربن ، زیاد می‌شود. فرایند جوشیدن و ذوب شدن ، مستلزم فایق آمدن بر نیروهای بین مولکولی در یک مایع و یک جامد است. دمای جوش و دمای ذوب بالا می‌رود، زیرا این نیروهای بین مولکولی با بزرگ شدن مولکولها افزایش می‌یابند. 

منبع صنعتی آلکانها

منبع صنعتی آلکانها ، نفت و گاز طبیعی همراه آن است. ترکیبهای آلی پیچیده که روزگاری سیستمهای زنده گیاهان و جانوران را تشکیل می‌دادند، در اثر فضارهای زمین شناختی ، طی میلیونها سال ، به مخلوطی از آلکانها که از نظر اندازه ، شامل یک کربن تا 30 تا 40 کربن هستند، تبدیل شده‌اند. سیکلوآلکانها نیز که در صنعت نفت به نفتنها شهرت دارند و به ویژه در نفت کالیفرنیا فراوان یافت می‌شوند، همراه با آلکانها بوجود آمده‌اند.

سوخت فسیلی دیگر ، یعنی زغال سنگ ، منبع بالقوه دیگر آلکانهاست. روشهایی برای تبدیل زغال سنگ از راه هیدروژن دار کردن به بنزین و سوخت کوره و همچنین تبدیل به گاز سنتز به منظور جبران کمبود گاز طبیعی ابداع شده است. 

saman77 بازدید : 640 یکشنبه 07 اردیبهشت 1393 نظرات (0)

 

 

 

به نام خالق هستی بخش جهان

 

موضوع:نانوکامپوزیت ها

گردآورنده:محمّدیوسفی

معلم مربوطه:جناب آقای سلامی

 

کلاس دوم تجربی

 

 

 

دبیرستان شهیدرجایی 1

 

دسته بندی، خواص و کاربرد

 

 مقدمه

کامپوزیت ترکیبی است که از لحاظ ماکروسکوپی از چند ماده متمایز ساخته شده باشد، به طوری که این اجزاء به آسانی از یکدیگرقابل تشخیص باشند.

به طور نمونه، یکی از کامپوزیت های آشنا بتن است که از دو جزء سیمان و ماسه ساخته شده است.

 

برای ایجاد تغییر و بهینه کردن خواص فیزیکی و شیمیایی مواد، آن ها را ترکیب یا کامپوزیت می کنیم. به طور مثال پلی اتیلن (PE) که در ساخت چمن های مصنوعی از آن استفاده می گردد، رنگ پذیر نیست و به همین سبب رنگ این چمن ها اغلب مات است. برای برطرف نمودن این نقص به آن وینیل استات می افزایند تا خواص پلاستیکی، نرمیت و رنگ پذیری آن اصلاح شود. در واقع، هدف از ایجاد کامپوزیت، به دست آوردن ماده ای ترکیبی با خواص مورد انتظار می باشد.

 

نانوکامپوزیت نیز همان کامپوزیت است که یک یا چند جزء از آن، ابعاد کمتر از 100 نانومتر دارد. نانوکامپوزیت ها از دو فاز تشکیل شده اند. فاز اول یک ساختار بلوری است که در واقع پایه یا ماتریس نانوکامپوزیت محسوب می شود و ممکن است از جنس پلیمر، فلز و یا سرامیک باشد. فاز دوم نیز ذراتی در مقیاس نانومتر می باشند که به عنوان تقویت کننده (مواد پرکننده Filler) به منظور اهداف خاص از قبیل استحکام، مقاومت، هدایت الکتریکی، خواص مغناطیسی و ... در درون فاز اول (ماده پایه) توزیع می شوند.

 

در بحث نانومواد، نانوکامپوزیت ها از جایگاه ویژه ای برخوردار هستند. حضور ذرات و الیاف در ساختار نانوکامپوزیت ها معمولاً باعث ایجاد استحکام در ماده ی پایه می شود. در واقع هنگامی که ذرات و یا الیاف درون یک ماده ی پایه توزیع شوند، نیروهای اعمال شده به کامپوزیت به طور یکنواختی به ذرات یا الیاف منتقل می شود. با توزیع مواد پرکننده درون ماده پایه خصوصیاتی نظیر استحکام، سختی، خواص تربیولوژیکی و تخلخل تغییر می کند. ماده ی پایه می تواند ذرات را به گونه ای از هم جدا نگه دارد که رشد ترک به تأخیر افتد. به علاوه اجزاء نانوکامپوزیت ها بر اثر برهمکنش سطحی بین ماده ی پایه و مواد پرکننده، از خواص بهتری برخوردار می شوند. نوع و میزان برهمکنش ها نقش مهمی در خواص مختلف نانوکامپوزیت ها همچون حلالیت، خواص نوری، خواص الکتریکی و مکانیکی آن ها دارد.

 

طبقه بندی نانوکامپوزیت ها

 

انواع نانوکامپوزیت را می توان بر اساس ماده پایه آن ها به شرح زیر طبقه بندی کرد:

 

نانوکامپوزیت های پایه پلیمری Polymer matrix nanocomposites (PMNCs)1-

 

نانوکامپوزیت های پایه سرامیکی Ceramic matrix nanocomposites (CMNCs)2-

 

نانوکامپوززیت های پایه فلزی Metal matrix nanocomposites (MMNCs)3-

 

در ادامه به بررسی خواص و کاربرد هر یک از این نانوکامپوزیت ها پرداخته می شود.

 

نانوکامپوزیت های پایه پلیمری

 

در بین نانوکامپوزیت ها بیشترین توجه به نانوکامپوزیت های پایه پلیمری معطوف است. یکی از دلایل گسترش نانوکامپوزیت های پلیمری، خواص بی نظیر مکانیکی، شیمیایی و فیزیکی آن است. نانوکامپوزیت های پلیمری عموماً دارای استحکام بالا، وزن کم، پایداری حرارتی بالا، رسانایی الکتریکی بالا و مقاومت شیمیایی بالایی هستند. تقویت پلیمرها با استفاده از مواد آلی و معدنی بسیار مرسوم می باشد. بر خلاف تقویت کننده های مرسوم که در مقیاس میکرون می باشند، در نانوکامپوزیت ها تقویت کننده ها ذراتی در ابعاد نانومتر می باشند. با افزودن درصد کمی از نانوذرات به یک پلیمر خالص، استحکام کششی، استحکام تسلیم و مدول یانگ افزایش چشمگیری می یابد. به عنوان مثال، با افزودن تنها 0.04 درصد حجمی میکا (یک نوع سیلیکات) با ابعاد 50 نانومتر به اپوکسی (Epoxy)، مدول یانگ این ماده 58 درصد افزایش خواهد یافت.

 

دلیل دوم توسعه نانوکامپوزیت های پایه پلیمری و افزایش تحقیقات در این زمینه، کشف نانولوله های کربنی در سال 1991 میلادی است. استحکام و خواص الکتریکی نانولوله های کربنی به طور قابل ملاحظه ای با نانولایه های گرافیت و دیگر مواد پرکننده تفاوت دارد. نانولوله های کربنی موجب رسانایی و استحکام فوق العاده ای در پلیمرها می شوند به طوری که کاربردهای حیرت انگیزی همچون آسانسور فضایی را برای آن می توان متصور شد. از نظر نظامی نیز فراهم کردن هدایت الکتریکی در پلیمرها فرصت های انقلابی را به وجود خواهد آورد. به عنوان مثال از پوسته های الکتریکی-مغناطیسی گرفته تا کامپوزیت های رسانای گرما و لباس های سربازان آینده

 

این دسته از کامپوزیت ها به دلیل خواص منحصر به فردی که دارند به طور گسترده ای در صنایع خودرو، هوا-فضا و بسته بندی مواد غذایی گسترش یافته اند. از دیگر کاربردهای نانوکامپوزیت های پلیمری پوشش های مقاوم به سایش، پوشش های مقاوم به خوردگی، پلاستیک های رسانا، حسگرها، آسترهای مقاوم در دمای بالا و غشاهای جداسازی گازها و سیالات نفتی می باشند. به عنوان مثال می توان به نوعی غشاء نانوکامپوزیتی ساخته شده از یک نوع پلیمر و نانولایه های سیلیکا اشاره کرد که توسط محققان دانشگاه کارولینای شمالی  ساخته شده است. این غشاء توانایی فوق العاده ای در جداسازی مولکول های آلی از گازها دارد.

 

نانوکامپوزیت های پایه سرامیکی

 

به مواد (معمولاً جامد) ی که بخش عمده ی تشکیل دهنده آن ها غیرفلزی و غیرآلی باشد، سرامیک گفته می شود. سرامیک ها خواص بسیار خوبی نظیر مقاومت حرارتی بالا، پایداری شیمیایی خوب و استحکام مکانیکی مناسبی دارند، اما به دلیل پیوندهای یونی و کووالانس موجود در سرامیک ها چقرمگی شکست آن ها پایین است و تغییر شکل پلاستیک این مواد محدود می باشد. به منظور رفع این مشکل با اضافه کردن و جداسازی الیاف و ذرات مناسب، می توان چقرمگی شکست را بالا برد. اگر این تقویت کننده ها ابعاد نانومتری داشته باشند بالاترین چقرمگی شکست به دست می آید.

 

به طور مثال در شکل1 نانوکامپوزیت نیترید سیلیسیم حاوی نانولوله های کربنی چند دیواره، نشان داده شده است. برای ساخت این نانوکامپوزیت از پرس ایزواستاتیک گرم استفاده می شود. از خواص مکانیکی قابل توجه این نانوکامپوزیت ها می توان به استحکام خمشی و مدول الاستیک قابل توجه آن ها اشاره کرد.

 

 نانوکامپوزیت های پایه فلزی

 

کامپوزیت های پایه فلزی، کم وزن و سبک بوده و به علت استحکام و سختی بالا کاربردهای وسیعی در صنایع خودرو و هوا-فضا پیدا کرده اند. اما این کاربردها به لحاظ کم بودن قابلیت کشش در این کامپوزیت ها محدود شده است. تبدیل کامپوزیت به نانوکامپوزیت سبب افزایش استحکام و رفع محدودیت های مذکور می شود.

 

نانوکامپوزیت های پایه فلزی اصولاً مشابه روش های متالوژی پودر تولید می شوند. این نانوکامپوزیت ها کاربردهای متفاوتی دارند خصوصاً نانوکامپوزیت های پایه منیزیم که در سال های اخیر به دلیل چگالی کم، استحکام بالا، مقاومت به خزش بالا و پایداری حرارتی مناسب، گسترش چشمگیری داشته اند. نانوکامپوزیت های پایه منیزیم کاربردهای گسترده ای در صنایع هوایی و خودروسازی دارند.

 

 نانوکامپوزیت و فردا

 

مهمترین تأثیر نانوکامپوزیت ها در آینده از طریق کاهش وزن خواهد بود. اخیراً کامپوزیت های نانوذره سیلیکاتی به بازار خودروها وارد شده اند. در سال 2001 هم جنرال موتور و هم تویوتا شروع تولید محصول با این مواد را اعلام کردند. مزیت این مواد استحکام و کاهش وزن است که مورد آخر صرفه جویی در سوخت را نیز به همراه خواهد داشت.

 

علاوه بر این نانوکامپوزیت ها به صنعت بسته بندی مواد غذایی نیز راه یافته اند تا سدی بزرگتر در برابر نفوذ گازها و کاهش فساد باشند. محققان معتقدند که افزودن دو درصد نانوذره رس به بسته بندی، 75 درصد تبادل اکسیژن و دی اکسید کربن را کاهش می دهد که این امر به افزایش طول مدت نگهداری مواد غذایی کمک می کند. در مورد ضدباکتریهایی نظیر نانوذرات نقره، این نانوذرات از رشد عوامل زنده فاسده کننده مواد غذایی مانند باکتریها و قارچ ها جلوگیری می کنند.

 

خواص تعویق آتشگیری نانوکامپوزیت های حاوی نانوذرات سیلیکا، می تواند به خوبی مصارفی در سرویس خواب، پرده ها و محصولاتی از این دست پیدا کند.

saman77 بازدید : 99 یکشنبه 07 اردیبهشت 1393 نظرات (0)

 

به نام خداوندیکتا

 

 

موضوع:شیمی نفت

گردآورنده:محمّدیوسفی

معلم مربوطه:آقای سلامی

 

کلاس دوم تجربی

 

 

 

 

 

دبیرستان شهیدرجایی 1

تاریخچه

 

این ماده را از قرنها پیش بصورت گاز در آتشکده و یا به فرم قیر (کاده ای که پس از تبخیر مواد فرار یا سبک نفت از آن باقی می‌ماند) می‌شناخته‌اند یا بطوری که در کتب مقدس و تاریخی اشاره شده است که در ساختمان برج بابل از قیر استفاده گردیده و کشتی نوح و گهواره موسی نیز به قیر اندوده بوده است. بابلی‌ها از قیر بعنوان ماده قابل احتراق در چراغها و تهیه ساروج جهت غیر قابل نفوذ نمودن سدها و بالاخره جهت استحکام جاده‌ها استفاده می‌کرده‌اند.

مدت زمان مدیدی ، مورد استعمال نفت فقط برای مصارف خانگی و یا به عنوان چرب‌کننده‌ها بود، اما از آغاز قرن شانزدهم میلادی روز به روز موارد استعمال آن رو به افزایش نهاد تا اینکه در سال 1854 دو نفر داروساز وجود یک فراکسیون سبک قابل اشتعال را در روغن زمینی تشخیص دادند و همچنین به کمک تقطیر ، مواد دیگری بدست آوردند که برای ایجاد روشنایی بکار می‌رفت. بر اساس این کار آزمایشگاهی بود که بعدا دستگاههای عظیم تصفیه نفت طرح‌ریزی و مورد بهره برداری قرار گرفت. صنعت نفت در آتازونی در سال 1859 شروع شد.

 

تاریخچه استخراج نفت در ایران

صنعت نفت ایران نیز از سال 1908 پس از هفت سال تفحص مکتشفین و کشف نفت در مسجدسلیمان واقع در دامنه جبال زاگرس ، پا به عرصه وجود گذاشت.

 

نفت خام

امروزه چاههای نفت متعددی در سراسر جهان وجود دارد که از آنها نفت استخراج می‌کنند و به نفتی که از چاه بیرون کشیده می‌شود، نفت خام می‌گویند. نفت خام را تصفیه می‌کنند، یعنی هیدروکربنهای گوناگونی را که نفت خام از آنها تشکیل شده است از یکدیگر جدا می‌کنند که به این کار پالایش نفت می‌گویند و در پالایشگاهها این کار انجام می‌شود. نفت منبع انرژی و سرچشمه مواد اولیه بسیاری از ترکیبات شیمیایی است و این دور از عوامل اصلی اقتصادی مدرن بشمار می‌رود. در صنایع جدید از ثروت بیکران و تغییر و تبدیل مواد خام اولیه آن بی‌اندازه استفاده می‌شد.

 

 

تشکیل نفت

نحوه پیدایش نفت دقیقا تشخیص داده نشده و در این مورد فرضیات گوناگونی پیشنهاد شده است. برخی از این تئوریها ، مربوط به مواد معدنی و بعضی دیگر مربوط به ترکیبات آلی می‌باشد.

 

تشکیل نفت از مواد معدنی

اساس این فرضیه بر این است که کربورهای فلزی تشکیل شده در اعماق زمین در اثر تماس با آب‌هایی که در زمین نفوذ می‌نماید، ابتدا ایجاد هیدروکربورهای استیلنی با رشته زنجیر کوتاه می‌کند. سپس هیدروکربورهای حاصل در اثر تراکم و پلیمریزه شدن ایجاد ترکیبات پیچیده و کمپلکس را می نماید که اغلب آنها اشباع شده است.

 

تشکیل نفت از مواد آلی

بر اساس این فرضیه تشکیل نفت را در اثر تجزیه بدن حیوانات در مجاورت آب و دور از هوا می‌دانند. زیرا در این شرایط ، قسمت اعظم مواد ازته و گوگردی تخریب و مواد چرب باقیمانده در اثر آب ، هیدرولیز می‌گردد. اسیدهای چرب حاصله ، تحت اثر فشار و درجه حرارت با از دست دادن عوامل اسیدی تولید هیدروکربورهائی با یک اتم کربن کمتر می‌نماید.

 

"انگلر Engler" از تقطیر حیوانات دریائی توانسته است مواد نفتی را تهیه نماید و با توجه به خاصیت "چرخش نوری" مواد نفتی که علت آن وجود گلسترین است (ماده ای که در بدن حیوانات وجود دارد) این فرضیه بیان و مورد تایید شده است. در صورتی که فرضیه های دیگر که مبتنی بر اساس مواد معدنی در تشکیل نفت می‌باشد، هیچگونه توضیح و دلیل قانع کننده ای در مورد این ویژگی نمی‌تواند بیان نماید.

 

همچنین نفت می‌تواند از تجزیه گیاهان تولید گردد. در این حالت ، خاصیت چرخش نور را به علت وجود ترکیب مشابه گلسترین یعنی پلی استرولها می‌دانند."مرازک Mrazec" ، میکروبها را در این تغییر و تبدیل موثر می‌داند.

 

تئوری تشکیل نفت بر مبنای مواد آلی ، فعلا بیشتر مورد قبول می‌باشد و اختلاف قابل ملاحظه‌ای را که بین ژیزمان‌ها (منابع نفتی) مشاهده می‌گردد، بعلت شرایط و عوامل مختلف تشیکل ژیزمان‌ها می‌دانند.

 

مواد سازنده نفت خام

مواد سازنده نفت از نظر نوع هیدروکربور و همچنین از نظر نوع ترکیبات هترواتم دار بستگی به محل و شرایط تشکیل آن دارد. بنابراین مقدار درصد مواد سازنده نفت خام در یک منبع نسبت به منبع دیگر تغییر می‌کند. بطور کلی مواد سازنده نفت شامل: هیدروکربورها- ترکیبات اکسیژنه - سولفوره - ازته و مواد معدنی می‌باشد.

 

خواص نفت خام

گرانی

چگالی نفتهای خام را بیشتر بر حسب درجه A.P.I به جای گرانی ویژه (چگالی نسبی) بیان می‌کنند. ارتباط بین این دو ، به گونه ای است که افزایش گرانی API با کاهش گرانی ویژه مطابقت می‌کند. گرانی نفت خام می‌تواند بین پایینتر از 10API تا بالاتر از 50API قرار بگیرد، ولی گرانی اکثر نفتهای خام در گستره بین 20 تا 45API قرار دارد. گرانی API همواره به نمونه مایع در 60 درجه فارینهایت اشاره دارد.

 

مقدار گوگرد

مقدار گوگرد و گرانی API دو خاصیتی هستند که بیشترین اثر را به ارزش‌گذاری نفت خام دارند. مقدار گوگرد بر حسب درصد وزنی گوگرد بیان می‌شود و بین 0,1 در صد تا 5 درصد تغییر می‌کند. نفتهایی که بیش از 0,5 درصد گوگرد دارند، در مقایسه با نفتهای کم‌گوگردتر ، معمولا محتاج فراورشهای گسترده‌تری هستند.

 

 

 

 

نقطه ریزش

 

نقطه ریزش نفت خام بر حسبیامعرف تقریبی پارافینی‌ بودن یا آروماتیکی ‌بودن نسبی آن است. هرچه نقطه ریزش پایینتر باشد، مقدار پارافین کمتر و مقدار آروماتیک بیشتر است.

 

حلالیت

 

قابلیت انحلال هیدروکربورها در آب عموما خیلی کم می‌باشد. مقدار آب موجود در هیدروکربورها با افزایش درجه حرارت زیاد می‌شود. حلالیت هیدروکربورها در کلروفرم ، سولفورکربن و تتراکلریدکربن حائز اهمیت است که با افزایش درجه حرارت ، زیاد و با افزایش وزن مولکولی کاسته می‌گردد. قابلیت انحلال آروماتیکها بیشتر بوده و بعد از آنها اولفین‌ها - نفتن‌ها - متانی‌ها قرار دارد.

ضمنا قابلیت انحلال ترکیبات اکسیژنه - ازته - سولفوره ، کمتر از هیدروکربورها می‌باشد. بالاخره نفت ، حلال هیدروکربورهای گازی‌شکل و تقریبا تمام هیدرورکربورهای جامد - گریس‌ها - رزین‌ها - گوگرد و ید می‌باشد.

 

نقطه جوش

 

نقطه جوش هیدروکربورهای خالص با وزن مولکولی و همچنین برای سری‌های مختلف با تعداد مساوی اتم کربن بترتیب از هیدروکربورهای اشباع‌شده به اولفین‌ها - نفتن‌ها و آروماتیکها افزایش می‌یابد. بدین ترتیب نقطه جوش هیدروکربورهای اشباع شده و اولفین‌ها از همه کمتر و سیکلوآلکان‌ها و آروماتیکها از سایرین بیشتر می‌باشد.

 

برای برش‌های نفتی که مخلوطی از هیدروکربورهای مختلف می‌باشند، یک نقطه جوش ابتدائی و یک نقطه جوش انتهایی در نظر گرفته می‌شود و حد فاصل بین این دو نقطه برای یک برش به نوع مواد سازنده اغلب زیاد و متغیر می‌باشد که به این حد فاصل بین دو نقطه "گستره تقطیر" گفته می‌شود.

 

گرمای نهان تبخیر

گرمای نهان تبخیر در یک سری همولوگ از هیدروکربن‌ها بترتیب از مواد سبک به سنگین کاهش می‌یابد و همچنین مقدار آن از یک سری به سری دیگر ، مثلا بترتیب از آروماتیکها به نفتن‌ها و هیدروکربورهای اشباع شده نقصان می‌یابد. بنابراین گرمای نهان تبخیر با دانسیته فراکسیون مربوط بستگی دارد.

 

قدرت حرارتی

قدرت حرارتی عبارت از مقدار کالری است که از سوختن یک گرم ماده حاصل می‌شود. قدرت حرارتی هیدروکربورها به ساختمان مولکولی آنها و قدرت حرارتی یک برش نفتی به نوع و مواد سازنده آن سبتگی دارد. قدرت حرارتی متان بیشتر از سایر هیدروکربورها و برابر با 13310 کیلوکالری به ازای یک کیلوگرم می‌باشد و مواد سنگین حاصله از نفت خام دارای قدرت حرارتی در حدود 10000 کیلو کالری می‌باشد.

 

اثر اسید نیتریک

هیدروکربورها در اثر اسید نیتریک به ترکیبات نیتره یا پلی‌نیتره تبدیل می‌شود. نیتراسیون برخی از مواد نفتی منجر به تهیه ترکیبات منفجره یا مواد رنگین می‌گردد.

 

موارد استعمال برخی از برش های نفتی بدست آمده از نفت خام:

شیرین کردن آب دریا

یکی از موارد استعمال گازهای نفتی در صنایع وابسته به پالایشگاهها تهیه آب شیرین از آب شور می‌باشد.

 

به عنوان سوخت

از جمله ، بنزین برای سوخت موتورهای مختلف ، کروزون سوخت اغلب تراکتورها و ماشین‌های مورد استفاده در کشاورزی و همچنین موتورهای جت هواپیماها اغلب از کروزون یا نفت سفید می‌باشد، گازوئیل که موتورهای دیزل بعنوان سوخت از نفت گاز (گازوئیل) استفاده می‌نمایند، نفت کوره یا مازوت یک جسم قابل احتراق با قدرت حرارتی 10500 کالری بوده که بخوبی می‌تواند جانشین زغال سنگ گردد و سوختن آن تقریبا بدون دود انجام می‌گیرد.

 

روشنایی

از کروزون جهت روشنایی و همچنین برای علامت دادن به کمک آتش استفاده می‌شود، چون نقطه اشتعال کروزون بالاتر از 35 درجه است، لذا از نظر آتش‌سوزی خطری ندارد.

 

حلال

از هیدروکربورهای C4 تا C10 می‌توان برش‌هائی با دانسیته و نقاط جوش ابتدائی و انتهایی متفاوت تهیه نمود که مورد استعمال آنها اغلب بعنوان حلال می‌باشد. بعنوان مثال ، اتر نفت یک حلال سبک با نقطه جوش 75-30 درجه سانتیگراد و وایت اسپیریت (حلال سنگین) که از تقطیر بنزین بدست می‌آید بعنوان حلال ، رنگ‌های نقاشی و ورنی ها استفاده می‌گردد. همچنین برای تمیز کردن الیاف گیاهی و حیوانی و یا سطح فلزات از برش‌های خیلی فرار (تقطیر شده قبل از 110 درجه سانتیگراد) استفاده می‌شود.

 

روان کاری

 روغنهای چرب کننده: نوعی روغن که جهت روان کاری بکار می‌رود. بستگی به شارژ ، سرعت ، درجه حرارت دستگاه دارد.

 

انواع روغنها عبارتند از:

 

1.روغن دوک برای چرب کردن دوک ، موتورهای الکتریکی کوچک و ماشین های نساجی و سانتریفوژهای کوچک.

2.روغن ماشین‌های یخ سازی جهت روغنکاری کمپرسورهای آمونیاکی کارخانجات یخ‌سازی.

3.روغن ماشین‌های سبک جهت روان کاری موتورهای الکتریکی ، دینام‌ها و سانتریفوژهای با قدرت متوسط.

4.روغن ماشین‌های سنگین مخصوص روغنکاری موتورهای دیزلی است مانند دیزل‌های سورشارژه و غیره

5.روغن برای سیلندرهای ماشین بخار

6.روغن برای توربین ها

روغن برای موتورهای انفجاری( اتومبیل و غیره..).7

8.روغن دنده

9.روغن موتورهایی که دائما با آب در تماس است

 

گریس ها: یک روان کننده نیمه جامد است و متشکل از یک روغن نفتی و یک پر کننده (از سری صابونهای فلزی) یا سفت‌کننده (از مواد پلیمری) می‌باشد. کاربرد گریس بیشتر برای اتومبیل‌ها و برخی صنایع مناسب می‌باشد.

 

آسفالت و قیراندودی: در حال حاضر 75 درصد از باقیمانده حاصل از عمل تقطیر در خلاء برای پوشش جاده‌ها مورد استفاده قرار می‌گیرد.

 

موارد استعمال داروئی: از قبیل وازلین باعث نرم شدن پوست بدن گردیده و برای بهبود سرمازدگی نیز موثر است.

 

پارافین: از پارافین ذوب شده و خالص شده جهت ساخت داروهای زیبائی استفاده می‌گردد.

 

گلیسیرین: مقدار قابل ملاحظه ای از این ماده ، از نفت تهیه می‌گردد. علاوه بر مصارفی که گلیسیرین در صنعت (برای تهیه باروت دینامیت ، مرکب و غیره) دارد، از آن برای فرم نگه داشتن پوست بدن و یا تهیه داروهائی از قبیل گلیسیرین یده استفاده می‌شود.

 

 

 

 

 

saman77 بازدید : 400 یکشنبه 07 اردیبهشت 1393 نظرات (0)

 

 

به نام ایزدمنان

 

 

موضوع:رنگها

گردآورنده:محمّدیوسفی

معلم مربوطه:آقای سلامی

کلاس دوم تجربی

 

 

 

 

دبیرستان شهیدرجایی1

 

 

رنگها

 

رنگ یک ماده مهندسی میباشد، اما برخلاف بعضی از مواد مهندسی یک ماده ساده نیست، یا حتی نمی توان آن را به سادگی به صورت دسته ای از مواد تعریف کرد. رنگ می تواند از هزاران ماده شیمیایی طبیعی و مصنوعی آلی و معدنی تشکیل شود. تهیه فیلمهائی از رنگ که تاثیرات مطلوب را به همراه داشته باشند مستلزم به کارگیری استادانه انواع بسیاری از تکنیکهای مهم با استفاده از مواد اولیه می باشد

بدون شک هرگاه شخصی مواد خامی را که امروزه تهیه کنندگان پوششهای آلی مورد استفاده قرار می دهند با مواد مصرفی 40 سال قبل مقایسه کند از افزایش تعداد وانواع آنها متحیرخواهد شد.

درحقیقت تعداد بی شماری رزین مصنوعی، روغن و رقیق کننده با انواع وسیعی از رنگدانه های معدنی و آلی وجود دارند که می توان در ساخت یک پوشش آلی از آنها استفاده کرد. بنابراین، می توان گفت که ساده ترین پوشش ساخته شده در حقیقت یک سیستم پیچیده است.

یک رنگ برای مصرف کننده نهائی باید دارای خصوصیاتی از قبیل سهولت استعمال، خشک شدن سریع و عدم سینه دادن، ته نشین شدن، جداشدن رنگدانه ها، ژل شدن، پوسته زدن و در نهایت پایداری هنگام نگهداری را دارا باشد. افزودن مقدار کمی از ترکیباتی به غیر از ترکیبات معمولی و اصلی رنگ، برای دستیابی به خواص عملی مطلوب، به دورانهای اولیه صنعت برمیگردد. در طول دوران صنعت تاکنون ترکیباتی از قبیل صابونها، چسبها،سفیده تخم مرغ، صمغهای طبیعی و نوعی از آسفالت به نام گیلسونت همواره برای این منظور مورد استفاده قرار می گرفته است. امروزه، با وجود این که هنوز تعدادی از این مواد مورد استفاده قرار می گیرند، اما مصرف مواد اضافه شونده مصنوعی رو به افزایش نهاده است. در یک عبارت کلی، هر یک از اجزای سازنده رنگ، در حقیقت، یک ماده اضافه شونده است. سازنده های رنگ به دو دسته تقسیم می شوند: قسمت اول شامل آن دسته از مواد میباشد که برای یک رنگ اساسی هستند و قسمت دوم شامل موادی که به منظور بهبود و اصلاح طبیعت و کیفیت رنگ، سهولت روشهای استعمال آن، یا بعضی هدفهای دیگر مورد استفاده قرار می گیرند.

یک رنگ متشکل از رنگدانه، رزین، حلال، خشک کن یا ماده سخت کننده میباشد. با وجود این، هیچ لزومی ندارد که همواره تمام این مواد در یک رنگ وجود داشته باشند. برعکس در اغلب رنگها، مواد اولیه فوق برای به وجود آوردن یک ماده پوشش دهنده نهائی به تنهائی کافی به نظر نمی رسند. اما به هر حال این مواد جزء مواد اصلی رنگ به شمار می روند.

یک فرمول کننده رنگ می تواند از مواد اضافه شونده به عنوان ابزار اساسی برای اصلاح و بهبود پوششها استفاده کند. در صورت استفاده صحیح از مواد اضافه شونده فرمول کننده رنگ می تواند، بدون هیچگونه افزایش در قیمت رنگ، و یا حتی با کاهش دادن آن بدون کاهش کیفیت، رنگی با بالاترین کیفیت را تولید نماید. بنابراین، مواد اضافه شونده یک جزء لازم از پوششها را تشکیل می دهند.

مواد اضافه شونده در رنگ ها

انواع مواد اضافه شونده به رنگ ها که استفاده قرار می گیرند، عبارتند از:خشک کن ها ، مواد ضد پوسته، مواد تعدیل کننده گرانروی و مواد ضد رسوب، ضد سینه دادن، مواد پخش کننده، موادی که کمک به همتراز شدن سطح فیلم رنگ می کنند ، مواد بازدارنده خوردگی ، مواد ضد کپک یا باکتری ، مواد ضد خزه یا ضد جلبک ، موتد ضد کف یا کف زدا ، مواد ضد یخ ، مواد جاذب نور فرابنفش ، مواد کند کننده آتش سوزی ، مواد خوشبو کننده و بو زدا ، مواد مقاوم کننده فیلم رنگ در مقابل رطوبت ، موادی که باعث افزایش نقش چکشی رنگهای چکشی می شوند ، مواد کنترل کننده برق فیلم رنگ (مواد مات کننده) و مواد نرم کننده.

 

خشک کنها

به طور کلی زمانی که فیلم یک رنگ خشک می شود مراحل زیر اتفاق می افتد:

1-تبخیر مواد فرار: این عمل به ترتیب باعث می شود که:

مایع رنگ غلیظ شود؛

جدائی فاز صورت گیرد(ژلاتینی شدن یا بلور شدن)؛

فشارهای حاصل از انقباض فیلم موجب فشرده شدن دانسیته فیلم گردد؛

رنگ بر روی شیء پخش گردد و آن را مرطوب سازد تا سطح چسبنده ای بین شیء و رنگ ایجاد شود؛

پوسته فیلم کشیده شده و مولکولهائی که در سطح تماس با هوا واقعند دوباره سازمان دهی شوند؛

رنگدانه ها ته نشین و یا غوطه ور شوند.

2-جذب اکسیژن و سایر گازها از هوا: در بسیاری از موارد در خلال جذب اکسیژن واکنشهائی صورت می گیرد که باعث می شود تعداد نسبتا کمی از مولکولها به منومترهای قابل پلیمر شدن تبدیل گردند.

3-مولکولهای کوچکتر مولکولهای بزرگتر را تشکیل می دهند، و در این میان واکنشهای حلقوی صورت می گیرد.

4-ممکن است جدائی فاز صورت گیرد: که در آن مولکولهای پیچیده نامحلول به صورت ذرات امولسیونی کوچک(یا میکرو ژلها) جدا شده و به شکل کلوئیدی در فاز مایع معلق می شوند. مایع پیوستگی خود را به عنوان یک محیط معلق کننده برای کلوئید حفظ می کند، زیرا هنوز مولکولهائی از ذرات همنوع و غیر همنوع وجود دارند که از نظر مولکولی در یک مخلوط بی نظم قابل مخلوط کردن با یکدیگر میباشند تا یک مایع بی شکل را بوجود آورند.

5-ژلاتینی شدن: که نمایانگر آخرین مرحله خشک شدن فیلم رنگ می باشد و آن را مرحله دگرگونی فاز نیز می نامند. در این مرحله ذرات پراکنده یک شبکه به هم پیوسته را تشکیل می دهند، و به این ترتیب جامد خلل و فرج داری بوجود می آید که در حقیقت بخشی از فیلم خشک شده رنگ میباشد، و مایع باقیمانده در درون فضاهای خالی این جامد جای می گیرد. گاهی اوقات قبل از اینکه تمام حلال تبخیر شده باشد ژلاتینی شدن اتفاق می افتد یا ممکن است این عمل تا زمانی که بخش اعظمی از حلال تبخیر و اکسیداسیون بیشتری انجام شود صورت نگیرد.

در بعضی از انواع پوششهای آلی برای تسریع خشک شدن فیلم رنگ از موادی استفاده می شود که آنها را خشک کن می نامند. خشک کنها را می توان به عنوان کاتالیزورهائی تعریف کرد که وقتی به رنگ افزوده می شوند باعث تسریع در خشک شدن یا سخت شدن فیلم رنگ می گردند. بضی ها خشک کنها را به عنوان«قاصدانی» تعریف کرده اند که مولکولهای اکسیژن هوا را می ربایند و آنها را به مولکولهای روغن خشک شونده یا نیمه خشک شونده به کار رفته در ساختمان مولکولی رنگپایه رنگ می رسانند و همین مراحل دوباره تکرار می شود تا اکسیژن بیشتری به مولکولهای روغن برسد.

 

ضد پوسته ها

زمانی یک فیلم قابل استفاده و عرضه به بازار خواهد بود که بتواند حداقل فیلمی با شرایط مورد نظر تشکیل داده و در زمان مناسب خشک شود. برای ارائه فرمول یک رنگ زمان، انرژی و تلاش بسیاری صرف می شود تا با تعیین نوع و مقدار صحیح از یک یا چند خشک کننده رنگی با بهترین خواص خشک شوندگی تهیه شود. منظور از بهترین خواص خشک شوندگی در یک رنگ آن است که در هنگام استعمال رنگ بر روی سطح پس از آنکه به صورت فیلم درآمد در زمان مناسب همراه با ایجاد بهترین خصوصیات فیزیکی خشک شود. بنابراین، هرگاه رنگ در زمان و مکانی به غیر از زمان و مکان استعمال آن خشک شود، مورد قبول نخوهد بود و این همان پوسته بستن رنگ، از جمله عیوب مهم آن میباشد.

به طور کلی، پوسته بستن رنگ مربوط به تمایل پلیمر شدن و اکسایش رنگپایه های مصرفی در پوششهای محافظت کننده میباشد که موجب خشک شدن رنگ می گردد. ما می خواهیم که رنگ پس از استعمال بر روی سطح خشک شود. و به همین منظور به آن خشک کن اضافه می کنیم. در بعضی فرمول بندیها نه تنها از این طریق به خشک شدن کلی فیلم رنگ دست می یابیم، بلکه یک خشک شدن سطحی سریع نیز در رنگ ایجاد می شود که موجب تشکیل یک پوسته نازک بر روی سطح رنگ می گردد. اگر بخواهیم برای جلوگیری از پوسته بستن مقدار خشک کن را کم کنیم، تنها زمان خشک شدن را افزایش داده ایم نه اینکه از پوسته بستن جلوگیری کرده باشیم. این مسئله مخصوصا در پوششهای سریع خشک شونده آشکار میباشد. البته لازم به تذکر است که مسئله پوسته بستن رنگ همیشه جزء عیوب رنگ نیست، بلکه در بعضی رنگهای تجارتی که باید پس از خشک شدن، فیلم آنها چین و چروک دار باشد مسئله پوسته بستن از اهمیت به سزائی برخوردار خواهد بود.

می توان گفت که طبیعت اجزای متشکله یک رنگ در کارآئی آن، از جمله پوسته بستن، از اهمیت خاصی برخوردار است. همچنین علاوه بر طبیعت اجزای متشکله رنگ، میزان هر یک از آنها نیز در پیدایش خصوصیات مثبت و منفی رنگ موثر هستند. برای مثال، وقتی که در یک رنگ میزان خشک کنهای مصرفی بیش از حد معمول باشد، موجب شدت پوسته بستن رنگ می گردد. از طرف دیگر وجود حلالهای شدیدا فرار رنگی که درب قوطی آن محکم بسته شده و کاملا به دور از هوا میباشد، امکان تشکیل پوسته را به حداقل کاهش میدهد. البته هرگونه کاهشی در گرانروی سیستم رنگ نیز موجب کاهش تمایل به پوسته بستن می گردد، همانطوریکه هرگونه کاهشی در درصد مواد جامد رنگپایه نیز این کار را انجام میدهد.

از میان عواملی که موجب پوسته بستن رنگ می گردند می توان به موارد زیر اشاره کرد:

1-اکسایش سطح رنگ در ظرف محتوی آن

2-ژل شدن رنگ در اثر کاهش حلال؛

ترکیبی از دو مورد 1 و 2 که موجب به هم خوردن موازنه کلوئیدی رنگ می گردد.

بهترین راه برای جلوگیری از پوسته بستن افزودن مواد ضد اکسایش به رنگ میباشد. این گونه مواد بدون آنکه اثر سوئی بر روی خواص مطلوب رنگ داشته باشند، اثرات زیان بار اکسایش زود هنگام رنگ را خنثی می سازند. بسیاری از چربیها و روغنهای چرب به طور طبیعی حاوی مواد ضد اکسایش می باشند و در نتیجه از نظر پوسته بستن مسئله ای را ایجاد نمی کنند. اما در موادی که مقدار این مواد در حد کافی نباشد باید از مواد افزودنی دیگر استفاده کرد.

در ارزیابی و انتخاب یک ماده ضد پوسته علاوه بر چگونگی عملکرد آن در جلوگیری از پوسته بستن، چندین عامل دیگر نیز در نظر گرفته می شود که عبارتند از:

1-میزان تاثیر آن در کند کردن زمان خشک شدن؛

2-سازگاری با سیستمهای رنگ و جلا؛

3-میزان تاثیر آن در تغییر رنگ یا بد رنگ کردن فیلم خشک شده؛

4-میزان تاثیر آن در تغییر رنگ یا بد رنگ کردن اجزای مایع جلا؛

5-بو

علاوه بر این ، یک ماده ضد پوسته نباید هیچ گونه اثر زیان آوری بر روی گرانروی یا سایر خواص رئولوژیکی رنگ، چه در ابتدا و چه در خلال زمان انبار کردن،داشته باشد. همچنین، ماده ضد پوسته نباید اثر ناخواسته و نامطلوبی بر روی براقیت و دوام کلی فیلم رنگ بگذارد.

کارآئی ضد پوسته های مختلف با نوع رنگپایه ای که ضد پوسته در آن مورد استفاده قرار می گیرد، فرق می کند. مواد ضد پوسته را می توان به سه دسته تقسیم کرد:

1-اکسیم ها

2-پلی هیدروکسی فنلها و مشتقاتش

3-موادی از نوع حلالها که به عنوان یک ماده دیسپرس کننده محصولات شدیدا پلیمری عمل کرده و در نتیجه مانع ژل شدن ذرات می گردند.

 

مواد تعدیل کننده گرانروی و مواد ضد رسوب:

فرمول بندی رنگ ممکن است موجب تولید رنگهائی شود که بیش از حد سیال و روان باشند. رنگ مایعی که گرانروی آن پائین باشد ممکن است سیالیت آن بیش از حد لزوم برای مقصود نهائی باشد، هر چند سیالیت زیاد در شرایط ممکن است بسیار سودمند هم باشد. بنابراین گرانروی پائین در رنگین کننده ها، بتونه ها و لاکهای اسپری ممکن است مطلوب باشد ولی در پوششهائی که فیلم خشک شده آنها ضخامت بالائی دارد و همچنین رنگهائی که به وسیله قلم مو مصرف می شوند، چنین نمی باشند. در رنگهای با گرانروی پائین، رسوب رنگدانه ها در خلال مدت نگهداری، بخصوص اگر رنگدانه ها بهم فشرده باشند،اتفاق می افتد. این رسوب سنگین ممکن است در دیسپرسیون مجدد نیز اشکالاتی تولید کند. این اشکالات مربوط به روانی و سیالیت و رسوب رنگدانه را می توان با تنظیم گرانروی رنگ از بین برد. به وسیله انتخاب صحیح رنگدانه ها می توان کنترلهای بیشتری برای جلوگیری از رسوب بکار برد

گرانروی رنگ می تواند به وسیله افزودن مواد ضخیم کننده و غلیظ کننده افزایش داده شود، (یعنی سیالیت و روانی رنگ کم شود)، بدون اینکه حالت تیکسوتروپی در رنگ به وجود بیاید. عوامل ایجاد کننده حالت تیکسوتروپی، به رنگ ساختمان ژل مانندی می دهد. این حالت ژل مانند برای بسیاری از رنگهائی که به وسیله قلم مو مصرف می شوند، مفید است زیرا که از سینه دادن و شره کردن آن جلوگیری می نماید. این خاصیت نیز می تواند مسئله رسوب در مدت نگهداری را کاهش داده و یا بطور کلی از بین ببرد.

رنگهائی که حالت تیکسوتروپی دارند در تمام کاربردها مطلوب نیستند، برای مثال وقتی سیالیت خوب مورد نظر است، در این موقع نیز رسوب رنگدانه ها را می توان با مواد ضد رسوب یا فعال کننده سطح مانند سویالستین در حدود 1 درصد فرمول بندی کاهش داد. مواد فعال کننده سطح به سطح رنگدانه جذب می گردد که در نتیجه باعث افزایش حجم و کاهش وزن مخصوص آن می شود. نتیجه نهائی کاهش میزان رسوب است. دیسپرسیون مجدد رنگدانه های رسوب کرده به وسیله استفاده از رنگدانه یارهای فعال شده تسهیل می گردد، که معمولا این رنگدانه یار، کربنات کلسیم به میزان 5 درصد وزن رنگدانه می باشد. ذرات این رنگدانه یارها به دلیل دارا بودن لایه سطح آلی بسیار پرحجم می باشد و در خلال رسوب ذرات بین ذرات رنگدانه مستقر می شوند. وقتی رنگ بهم زده می شود ذرات رنگدانه یار به شکستن تجمع رنگدانه کمک می کند و در نتیجه دیسپرسیون مجدد به راحتی انجام می شود.

بسیاری از مواد، گرانروی رنگ را افزایش می دهند و یا موجب بوجود آمدن حالت تیکسوتروپی در فرمول بندی می گردند. متداولترین انواع این مواد عبارتند از : اترهای سلولز، سیلیکاهای میکرونیزه ، پنتونیتها

 

مواد ضد کف و کف زدا

کف سیستمی متشکل از دو فاز گاز و مایع می باشد که فاز گاز در فاز مایع پخش شده است. هنگام کار با دستگاههای مخلوط کنی و پر کردن رنگ کف ایجاد می شود و این مسئله موجب کند شدن سرعت تولید، مسدود شدن پمپها و لوله ها و افزایش هزینه تولید رنگ می گردد. لذا، باید در زمان تولید رنگ موادی به آن افزود که بتوان یا مانع ایجاد کف شد و یا اینکه آن را از بین برد. این مواد را تحت عنوان «مواد ضد کف» و یا «مواد کف زدا» می شناسند اما از نظر دسته بندی کلی مواد افزودنی رنگ می توان آنها را جزء «مواد فعال کننده سطح» بشمار آورد.

انتخاب مناسبترین و موثرترین ماده کف زدا یا ضد کف یک مسئله نسبتاً مشکل می باشد، اما، قوانین زیر، هر چند که ثابت نیستند، می توانند کمک زیادی به این امر کنند:

1-کشش سطحی ضد کف باید از کشش سطحی محلول کف کننده کمتر باشد

2-ضد کف باید در محلول کف کننده قابلیت حلالیت پائینی داشته باشد

3-ضد کف باید با محلول کف کننده به آسانی پخش شود

4-ضد کف بایدب ا محلول کننده واکنشی انجام ندهد

5-ضد کف باید ضریب گسترش بالائی داشته باشد

6-ضد کف نباید اثرات زیان آوری در محصول نهائی ایجاد کند

7-در مواردی که داشتن بو یا مزه مهم باشد، ضد کف نباید بو یا مزه خاصی از خود بجای بگذارد

8-ضد کف نباید موجب تجمع رنگدانه و ناپایداری امولسیون شود

9-ضد کف باید با مخلوط کف کننده امتزاج پذیری خوبی داشته باشد تا از پیدایش معایبی از قبیل چشم ماهی شدن یا ژل شدن فیلم خشک نشده رنگ جلوگیری شود

10-ضد کف باید فعالیت خود را برای یک زمان طولانی حفظ کند.

لازم به تذکر استکه علاوه بر عوامل فوق، عوامل دیگری از قبیل گرانروی و سایر اجزای متشکله رنگ، دماف سرعت فرایند تولید نیز در کارائی ماده ضد کف یا کف زدا موثر هستند.

مهمترین مواد ضد کف یا کف زدای مصرفی سیلیکونها، بعضی الکلهای شش الی ده کربنه (مثلا تونیل الکل)، مشتقات پلی اتیلن اکساید و پلی پروپلین اکساید و بعضی از محصولات طبیعی مانند ترپنتین، روغن کاج و روغن پشم و غیره می باشد. از آنجا که خواص ضد کف در فرمول بندیهای گوناگون متفاوت است نوع و مقدار قابل استفاده هر یک از این مواد یکسان نیست. پیشنهاد می شود که برای استفاده از نوع و میزان مصرف هر یک از مواد ضد کف یا کف زدا از توصیه ها و اطلاعات سازندگان آنها کمک گرفته شود. معمولا سازندگان این گونه مواد درصد ماده فعال موجود در آنها را چنان تنظیم می کنند که حدود 1/0 تا 5/0 درصد از کل وزن رنگ را بخود اختصاص دهند.

آب بدلیل کشش سطحی و قطبیت بالا فاز مایع مناسبی برای ایجاد کف بشمار می آید، لذا در ساخت رنگهای امولسیونی استفاده از مواد ضد کف بسیار ضروری و مفید می باشد. رنگهای ساخته شده از رزینهای امولسیون آکریلیک ، پلی وینیل استات ، پلی وینیل الکل ، آلکید و کائوچو نیاز حتمی به اینگونه مواد دارند.

در صنعت رنگسازی تفاوت زیادی بین مواد ضد کف و کف زدا وجود ندارد و هر دو تحت یک عنوان به فروش می رسند. از مواد ضد کف در تولیداتی که هدف جلوگیری از تشکیل کف است استفاده می شود و در صورتی که مواد کف زدا هنگامی استفاده می شوند که منظور از بین بردن کف تولید شده است.

یکی از روشهای عمومی در صنعت رنگسازی این است که نصف مواد ضد کف مورد نظر را ضمن پخش کردن رنگدانه به مخلوط رنگ می افزایند تا از تشکیل کف جلوگیری شود. سپس بقیه مواد ضد کف را در مرحله همرنگ کردن رنگ جهت عدم تشکیل کف بیشتر در هنگام پرکردن قوطیها و استعمال رنگ اضافه می کنند. البته استفاده از دو نوع ماده ضد کف هم منطقی بنظر می آید، زیرا ممکن است یکی از آنها در شرایط سخت پخش رگدانه موثرتر باشد و دیگری در شرایط نگهداری طولانی مدت رنگ مفیدتر واقع شود.

 

 

 

saman77 بازدید : 433 یکشنبه 07 اردیبهشت 1393 نظرات (1)

 

 

به نام خداوندجان آفرین

 

 

 

موضوع:چسبها,انواع وکاربردآنها

 

گردآورنده:محمّدیوسفی

 

معلم مربوطه:جناب آقای سلامی

 

کلاس دوم تجربی

 

 

 

 

 

 

دبیرستان شهیدرجایی1

 

 چسب

ساخت و مصرف چسب از گذشته رایج بوده است. در قدیم ، از موادی چون قیر و صمغ درختان به عنوان چسب استفاده می‌کردند. در تمام قرون گذشته و همچنین قرن نوزدهم چسب‌ها منشاء حیوانی و یا گیاهی داشته‌اند. چسب‌های حیوانی بطور عمده بر مبنای کلوژن مامالیام Mammaliamبودند که پروتئین اصلی پوست ، استخوان و رگ و پی است و چسب‌های گیاهی از نشاسته و دکسترین دانه‌های گندم ، سیب زمینی و برنج تهیه می‌شدند

 

کاربردهای متنوع چسب‌

 

از قرن نوزدهم بتدریج با پیدایش چسب‌های سنتتیک ساخته شده در صنعت پلیمر ، چسب‌های سنتی و گیاهی و حیوانی از صحنه خارج شده است. صنعت چسب به صورت گسترده ای در حال رشد می‌باشد و تعداد محدودی وسایل مدرن ساخت بشر وجود دارد که از چسب در آنها استفاده نشده است. در اتصالات اغلب وسایل از یک جعبه بسیار ساده غلات گرفته تا هواپیمای پیشرفته بوئینگ 747 از چسب استفاده شده است

 

امکانات بشر می‌تواند بوسیله چسب‌ها اصلاح گردد. این مطلب ، شامل استفاده از سیمان‌های سخت شده توسط UV در دندانپزشکی و سیمان‌های پیوند

آکلریلیک در جراحی استخوان می‌باشد. پیشرفت جدیدی که اخیرا در کاربرد چسب حاصل گشت، اتصال ریل‌های فولادی و تراموای جدید شهر منچستر بود. چسب‌ها نه تنها برای موادی که بایستی چسبانده و بهم پیوسته شوند، بلکه در ایجاد چسبندگی برای موادی از قبیل جوهر تحریر ، رنگها و سایر سطوح پوششی ، وسایل بتونه کاری و وجوه میانی در مواد ترکیبی از قبیل فولاد یا بافت پارچه ، در تایرهای لاستیکی و شیشه‌ یا الیاف در پلاستیک‌ها ضروری هستند.

 

 

 

 

 

اجزای تشکیل دهنده چسب‌ها

 

مواد پلیمری

 

چسب‌ها ، همگی حاوی پلیمر هستند یا پلیمرها در حین سخت شدن چسب‌ها بوسیله واکنش شیمیایی پلیمر شدن افزایشی یا پلیمر شدن تراکمی حاصل می‌شوند. پلیمرها به چسب‌ها قدرت چسبندگی می‌دهند. می‌توان آنها را به صورت رشته‌هایی از واحدهای شیمیایی همانند که بوسیله پیوند کووالانسی به هم متصل شده‌اند، در نظر گرفت.

 

پلیمرها در دماهای بالا روان می‌گردند و در حلال‌های مناسب حل می‌گردند. خاصیت روان شدن آنها در چسب‌های حرارتی و خاصیت حل شوندگی آنها در چسب‌های بر پایه حلال ، یک امر اساسی می‌باشد. پلیمرهای شبکه‌ای در صورت گرم شدن جریان نمی‌یابند، ممکن است در حلال‌ها متورم گردند، ولی حل نمی‌شوند. تمامی چسب‌های ساختمانی ، شبکه‌ای هستند، زیرا این مورد خزش (تغییر شکل تحت بار ثابت) از بین می‌برد.

 

افزودنیهای دیگر:

 

بسیاری از چسب‌ها ، علاوه بر مواد پلیمری دارای افزودنیهایی هستند از قبیل:

مواد پایدار کننده در برابر تخریب توسط اکسیژن و UV

مواد نرم کننده که قابلیت انعظاف را افزایش می‌دهد و دمای تبدیل شیشه‌ای (Tg ) را کاهش می‌دهد

مواد پر کننده معدنی که میزان انقباض در سخت شدن را کاهش می‌دهد و خواص روان شدن را قبل از سخت شدن تغییر می‌دهد و خواص مکانیکی نهایی را بهبود می‌بخشد

مواد تغلیظ کننده

معرف های جفت کننده سیلانی

 

تئوریهای چسبندگی

 

درباره چسبندگی شش تئوری وجود دارد که عبارتند از:

 

تئوری جذب فیزیکی

جذب فیزیکی شامل نیروهای وان‌دروالسی در بین سطوح می‌باشد که در بر گیرنده جاذبه‌های بین دو قطبی‌های دائم و دو قطبی القایی و نیروهای لاندن می‌باشد.

 

تئوری جذب شیمیایی

تئوری پیوند شیمیایی در مورد چسبندگی ، بر اساس تشکیل پیوندهای کووالانسی ، یونی و هیدروژنی بین سطح می‌باشد. مدارکی مبنی بر اینکه پیوندهای کووالانسی با عوامل جفت کنندگی سیلانی تشکیل می‌شود، وجود دارد و ممکن است که چسب‌ها شامل گروههای هیدروکسی یا آمین باشند که با اتم‌های هیدروژن فعال از قبیل گروههای هیدروکسیل ، اگر چوب یا کاغذ اجزا مورد عمل باشند، پیوند هیدروژنی ایجاد می‌کنند.

 

تئوری نفوذ

تئوری نفوذ این دیدگاه را مطرح می‌کند که پلیمرها هنگام تماس ممکن است در همدیگر نفوذ کنند. بنابراین مرز درونی سرانجام برداشته می‌شود و نفوذ پلیمرها در صورتی اتفاق می‌افتد که زنجیرهای متحرک و سازگار باشند. به عبارت دیگر ، دما باید از دمای تبدیل شیشه‌ای بالاتر رود.

 

تئوری الکتروستاتیک

تئوری الکتروستاتیک ، از این طرح سرچشمه گرفته است که وقتی دو فلز در تماس با یکدیگر باشند، الکترون‌ها از یکی به دیگری منتقل می‌شوند و بنابراین یک لایه مضاعف الکتریکی تشکیل می‌گردد که نیروی جذب را نشان می‌دهد. چون پلیمرها ، نارسانا هستند، مشکل به نظر می‌رسد که این تئوری برای چسب‌ها کاربرد داشته باشد.

 

تئوری پیوند درونی مکانیکی

اگر سطحی را که می‌خواهیم روی آن چیزی بچسبانیم، دارای سطحی نامنظم باشد آنگاه ممکن است چسب در ناهمواری‌های سطح ، قبل از سخت شدن داخل شود. این ایده ، باعث ظهور این تئوری شد که به اتصالات چسب با مواد متخلخل از قبیل چوب و نسوجات بسط داده شد. مثالی از این قبیل ، عبارت از استفاده از اتو در لایه چسب و در لباس می‌باشد. لایه چسب‌ها ، حاوی چسب‌های ذوبی هستند که پس از ذوب در پارچه نفوذ می‌کنند..

 

تئوری لایه مرزی ضعیف

تئوری لایه مرزی ضعیف ، پیشنهاد می‌کند که سطوح تمیز ، پیوندهای قوی‌تری با چسب ایجاد می‌کنند. اما برخی آلودگیها از قبیل زنگ و روغن یا گریسها ، لایه ای ایجاد می‌کنند که چسبندگی ضعیفی دارد. همه آلودگیها ، لایه مرزی ضعیف تشکیل نمی‌دهند، زیرا در برخی حالات ، آنها توسط چسب حل خواهند شد. در این محدوده ، چسب‌های ساختمانی آکریلیک ، برتر از اپوکسیدها هستند و این ، بدلیل توانایی آنها برای حل کردن روغن‌ها و گریس‌ها می‌باشد. 

 

آماده سازی سطح برای چسبندگی

 

آماده سازی نامناسب یا نادرست سطح ، احتمالا دلیل عمده شکسته شدن اتصالات چسبی می‌باشد. آماده‌ سازی سطح یک جسم با روش‌های زیر انجام می‌گیرد: روش های سائیدگی ، استفاده از حلال‌ها ، تخلیه شعله وکرونا ، حک کردن تفلون ، حک کردن فلزات ، آندی کردن فلزات ، استفاده از چند سازه ها

 

انواع چسب‌ها

 

چسب‌هایی که توسط واکنش شیمیایی سخت می‌شوند:

 

 

چسب‌های اپوکسیدی:

 

اپوکسیدها ، بهترین نوع چسبهای شناخته شده ساختمانی هستند و بیشترین کاربرد را دارند. رزین اپوکسی که اغلب در حالت معمول استفاده می‌شود، معمولا دی گیلیسریل اتراز بیس فنل DGEBA)A) نامیده می‌شود و بوسیله واکنش نمک سدیم از بیس فنل A با اپی کلروهیدرین ساخته می‌شود. آمینهای آروماتیک و آلیفاتیک به عنوان عامل سخت کننده استفاده می‌شوند. این چسب‌ها به چوب ، فلزات ، شیشه ، بتن ، سرامیک‌ها و پلاستیک‌های سخت بخوبی می‌چسبند و در مقابل روغن‌ها ، آب ، اسیدهای رقیق ، بازها و اکثر حلال‌ها مقاوم هستند. بنابراین کاربرد بیشتری در چسباندن کفپوش‌های وینیلی در سرویس‌ها و مکان‌های خیس و به سطوح فلزی دارند.

 

چسب‌های فنولیک برای فلزات:

 

وقتی که فنل با مقدار اضافی فرمالدئید تحت شرایط بازی در محلول آبی واکنش کند، محصول که تحت عنوان رزول شناخته شده و الیگومری شامل فنل‌های پلدار شده توسط اتروگرومتیلن روی حلقه‌های بنزن می‌باشد، بدست می‌آید. برای جلوگیری از تشکیل حفره‌های پر شده از بخار ، اتصالات چسب‌های فنولیک تحت فشار ، معمولا بین صفحات پهن فولادی گرم شده توسط پرس هیدرولیک سخت می‌شوند. بدلیل شکننده بودن فنولیکها ، پلیمرهایی از جمله پلی وینیل فرمال ، پلی وینیل بوتیرال ، اپوکسیدها و لاستیک نیتریل اضافه می‌شود تا سخت‌تر گردند.

 

چسب‌های تراکمی فرمالدئید برای چوب:

 

تعدادی از چسب‌های مورد استفاده برای چوب نتیجه تراکم فرمالدئید با فنول و رزوسینول (1و3 دی هیدروکسی بنزن) هستند. بقیه با اوره یا ملامین متراکم می‌شوند.

 

 

 

 

چسب‌های آکریلیک:

 

چسب‌های ساختاری شامل منومرهای آکریلیک توسط افزایشی رادیکال آزاد در دمای محیط سخت می‌شوند. منومر اصلی ، متیل متاکریلات (MMA) می‌باشد، اما موارد دیگری از قبیل اسید متاکریلات برای بهبود چسبندگی به فلزات بوسیله تشکیل نمکهای کربوکسیلات و بهبود مقاومت گرمایی و اتیلن گلیکول دی متیل اکریلات برای شبکه‌ای کردن نیز ممکن است مورد استفاده قرار گیرد.

 

کلروسولفونات پلی اتیلن ، یک عامل سخت کننده لاستیک است و کیومن هیدورپراکساید و N,N دی متیلن آنیلین ، اجزاء یک آغازگر اکسایشی- کاهشی هستند. پیوند دهنده هایی که برای اتصالات محکم مصنوعی به استخوان‌های انسان و پوششهای چینی برای دندان‌ها استفاده می‌شود نیز بر مبنای MMA هستند و بطورکلی برای جسباندن فلزات ، سرامیک‌ها ، بیشتر پلاستیک‌ها و لاستیک‌ها استفاده می‌شود و اتصالات پرقدرتی را ایجاد می‌کنند.

 

چسب‌های غیر هوازی:

 

چسب‌های غیر هوازی در غیاب اکسیژن که یک بازدارنده پلیمر شدن است، سخت می‌گردد. این چسب‌ها اغلب بر پایه دی متاکریلات‌هایی از پلی اتیلن گلیکول هستند. کاربرد این چسب‌ها ، اغلب در محل اتصال چرخ دنده ها ، تقویت اتصالات استوانه‌ای و برای دزدگیری می‌باشد.

 

چسب های پلی سولفیدی:

 

پلی سولفیدها در ابتدا به عنوان دزدگیر استفاده می‌شدند و یک کاربرد مهم دزدگیری لبه‌های آینه‌های دوبل می‌باشد. هر دو برای اینکه واحدها را باهم نگه دارند و مانعی در برابر نفوذ رطوبت ایجاد کنند. آنها به وسیله بیس (2- کلرواتیل فرمال) با سدیم پلی سولفید تهیه می‌شوند و به منظور کاهش قیمت از پرکننده های معدنی استفاده می‌شود. به عنوان نرم کننده ، از فتالات‌ها و معرف‌های جفت کننده سیلانی استفاده می‌شود و عامل سخت کننده آنها شامل دی اکسید منگنز و کرومات هستند.

 

 

سفت شدن لاستیکی چسب‌های ساختمانی:

 

بسیاری از چسب‌های ساختمانی ، پلیمرهای لاستیکی حل شده ای در خودشان دارند. وقتی که چسب‌ها سخت می‌شوند، لاستیک به صورت قطراتی با قطر حدود 1µm رسوب می‌کند. لاستیکهای استفاده شده در این روش شامل پلی وینیل فرمال (pvf) و پلی وینیل بوتیرال (PVB) هستند که هر دو بوسیله واکنش آلدئید مناسب با پلی وینیل الکل ساخته می‌شوند.

 

سیلیکون‌ها

 

چسب‌های یک جزئی سیلیکون اغلب به چسب‌های ولکانیزه شونده در دمای اطاق (rtv) معروفند و شامل پلی دی متیل سیلوکسان (PDMS) با جرم‌های مولکولی در محدود 1600-300 با گروههای انتهای استات ، کتوکسیم یا اتر هستند. این گروهها توسط رطوبت اتمسفر ، هیدرولیز شده ، گروههای هیدروکسیل تشکیل می‌دهند که بعدا با حذف آب متراکم می‌شوند.

چسب‌های سیلیکونی نرم و مطلوب هستند و دارای مقاومت محیطی و شیمیایی خوبی هستند. این چسب‌ها به عنوان بهترین پوشش برای استفاده در حمام شناخته شده‌اند.

 

چسب چوب

 

چسب‌هایی که بدون واکنش شیمیایی سخت می‌شوند

این چسب‌ها شامل سه نوع زیر می‌باشند:

چسب‌هایی که در اثر حذف حلال سخت می‌شوند.

چسب‌های تماسی: چسبهای تماسی احتمالا از معروف‌ترین چسب‌ها بر پایه حلال هستند. این‌ها محلول‌هایی از پلیمر در حلال آلی هستند که در دو سطح بکار می‌روند تا متصل شوند. ماده اصلی این چسب‌ها ، لاستیک پلی کلروپرن (پلی کروپرن ، پلی کلرو بوتادین) است و برای چسباندن روکش‌های تزئینی و پلاستیکهای محکم دیگر مثل ABS , DVC به چوپ و محصولات فلزی و چسبهای تماسی DIY برای تخت کفش بکار می‌روند.

 

چسب‌های پمادی: چسب‌های بر پایه حلال مشهور که در ظروف پماد مانند به عموم فروخته می‌شوند، اغلب محلول‌هایی از لاستیک نیتریل (همی‌پلیمر یا بوتادین و آکریلونیتریل) در حلال‌های آلی هستند.

 

چسب‌هایی که با از دست دادن آب سخت می‌شوند:

 

محلول‌های آبی و خمیرها: نشاسته ، ذرت و غلات ، منابع عمده برای استفاده چسب هستند. موارد مصرف عمده برای چسباندن کاغذ ، مقوا و منسوجات می‌باشد. کاربردهای آن شامل صفحات موجدار ، پاکتهای کاغذی ، پنجرگیری تیوپ ، چسباندن کاغذ دیواری و چسب‌های تر شدنی مجدد با آب می‌باشد. چسب‌های تر شدنی توسط آب شامل پلی (وینیل الکل) (DVOH) که در تمبر‌های پُستی مورد استفاده قرار می‌گیرند و از لاتکس صمغهای طبیعی (مثلا صمغی و دکسترین) و پلی وینیل استات (DVN) همراه با مقدار زیادی DVOH پایدار کننده تولید می‌شوند. DVOH تنها پلیمرمعروفی است که از منومر خودش ساخته نمی‌شود.

 

saman77 بازدید : 484 یکشنبه 07 اردیبهشت 1393 نظرات (0)

 

 

به نام خداوندمهربان

 

 

 

موضوع:شیمی محلولها

 

گردآورنده:محمّدیوسفی

 

معلم مربوطه:آقای سلامی

 

کلاس دوم تجربی

 

 

 

 

 

دبیرستان شهیدرجایی1

 

شیمی محلولها

 

 محلولها ، مخلوطهایی همگن هستند. محلولها را معمولا بر حسب حالت فیزیکی آنها طبقه بندی می‌کنند: محلولهای گازی ، محلولهای مایع و محلولهای جامد.

 

محلولها ، مخلوطهایی همگن هستند. محلولها را معمولا بر حسب حالت فیزیکی آنها طبقه بندی می‌کنند محلولهای گازی ، محلولهای مایع و محلولهای جامد. بعضی از آلیاژها محلولهای جامدند؛ سکه‌های نقره‌ای محلولهایی از مس و نقره‌اند و برنج محلولی جامد از روی در مس است. هر آلیاژی محلول جامد نیست، بعضی از آلیاژها مخلوطهایی ناهمگن اند. محلولهای مایع متداولترین محلولها هستند و بیشترین کاربرد را در بررسیهای شیمیایی دارند. هوا هم مثالی برای محلولهای گازی می‌باشد.

 

 ماهیت محلولها

 

در یک محلول ، معمولا جزئی که از لحاظ کمیت بیشترین مقدار را دارد، حلال و سایر اجزا را مواد حل شده (حل شونده) می‌گوییم. اما گاهی آسانتر آن است که جزئی از محلول را با آنکه مقدارش کم است، حلال بنامیم و گاهی اصولا اطلاق نام حلال و حل شونده به اجزای یک محلول (مثلا محلولهای گازی) چندان اهمیتی ندارد.

 

بعضی از مواد به هر نسبت در یکدیگر حل می‌شوند.امتزاج پذیری کامل از ویژگیهای اجزای تمام محلولهای گازی و بعضی از اجزای محلولهای مایع و جامد است. ولی غالبا، مقدار ماده ای که در حلال معینی حل می شود، محدود است. انحلال پذیری یک ماده در یک حلال مخصوص و در دمای معین، بیشترین مقداری از آن ماده است که در مقدار معینی از آن حلال حل می شود و یک سیستم پایدار به وجود می آورد.

 

 

 

غلظت محلول

 

برای یک محلول معین ، مقدار ماده حل شده در واحد حجم حلال یا در واحد حجم محلول را غلظت ماده حل شده می‌گوییم. مهمترین نوع غلظتها که در آزمایشگاه بکار می‌رود مولاریته و نرمالیته است.

 

انواع محلولها

 

محلولهای رقیق

محلولهایی که غلظت ماده حل شده آنها نسبتا کم است

محلولهای غلیظ

محلولهایی که غلظت نسبتا زیاد دارند

محلول سیر شده

اگر مقدار ماده حل شده در یک محلول برابر با انحلال پذیری آن در حلال باشد، آن محلول را محلول سیر شده می‌نامیم. اگر به مقداری از یک حلال مایع ، مقدار زیادی ماده حل شونده (بیشتر از مقدار انحلال پذیری آن) بیفزاییم، بین ماده حل شده و حل شونده باقیمانده تعادل برقرار می‌شود. ماده حل شونده باقیمانده ممکن است جامد ، مایع یا گاز باشد. در تعادل چنین سیستمی ، سرعت انحلال ماده حل شونده برابر با سرعت خارج شدن ماده حل شده از محلول است. بنابراین در حالت تعادل ، غلظت ماده حل شده مقداری ثابت است.

 

محلول سیر نشده

غلظت ماده حل شده در یک محلول سیر نشده کمتر از غلظت آن در یک محلول سیر شده است.

 

 

 

محلول فراسیرشده

می‌توان از یک ماده حل شونده جامد ، محلول فراسیر شده تهیه کرد که در آن، غلظت ماده حل شده بیشتر از غلظت آن در محلول سیر شده است. این محلول ، حالتی نیم پایدار دارد و اگر مقدار بسیار کمی از ماده حل شونده خالص بدان افزوده شود، مقداری از ماده حل شده که بیش از مقدار لازم برای سیرشدن محلول در آن وجود دارد، رسوب می‌کند.

 

خواص فیزیکی محلولها

 

بعضی از خواص محلولها به دو عامل ، نوع ماده حل شده و غلظت آن در محلول بستگی دارند. این مطلب برای بسیاری خواص فیزیکی محلولها از جمله ، محلولهای آبی درست به نظر می‌رسد. برای مثال، محلول نمک طعام در آب بی رنگ پرمنگنات پتاسیم در آب، بنفش صورتی است (در اینجا نوع ماده حل شده مطرح است). افزون بر این ، می‌دانیم که هر چه بر محلول پرمنگنات آب بریزیم و آن را رقیقتر کنیم، از شدت رنگ آن کاسته می‌شود (اینجا غلظت محلول مطرح است)

یکی دیگر از خواص فیزیکی که به این دو عامل بستگی دارد، قابلیت هدایت الکتریکی محلول آبی مواد گوناگون است.

 

چهار خاصه فیزیکی دیگر از محلولها وجود دارد که به نوع و ماهیت ذرات حل شده بستگی ندارد، بلکه فقط به مجموع این ذرات وابسته است. به عبارت دیگر ، تنها عامل موثر بر خواص محلول در اینجا ، غلظت است. چنین خواصی از محلول را معمولا "خواص جمعی محلولها" (خواص کولیگاتیو)).Colligative properties) می‌نامند

 و عبارتند از کاهش فشار بخار ، صعود نقطه جوش ، نزول نقطه انجماد و فشار اسمزی.

 

کاهش فشار بخار

وقتی یک حل شونده غیر فرار در یک حلال حل می‌شود، فشار بخار آن کاهش می‌یابد و مقدار کاهش به مقدار حل شونده بستگی دارد. هر چه میزان حل شونده بیشتر باشد، میزان کاهش در فشار بخار بیشتر است. برای مثال اگر دو ظرف را در نظر بگیریم که در آنها مقدار مساوی مایع وجود دارد که یکی محتوی مولکولهای آب خالص و دیگری محتوی محلول قند در آب است، بدیهی است که تعداد مولکولهای آب در واحد حجم از آب قند ، کمتر از آب خالص است. به همین نسبت ، تعداد مولکولهای آب در سطح آب قند ، نیز کمتر می‌باشد. بنابراین، نسبت مولکولهای پرانرژی آب که قادر به تبخیر از سطح آب قند هستند، کمتر می‌باشد و در نتیجه فشار بخار محلول کمتر می‌شود.

 

افزایش نقطه جوش

 

در اثر حل شدن مقداری حل شونده غیر فرار در یک حلال ، نقطه جوش آن افزایش می‌یابد. مقدار افزایش فقط به مقدار حل شونده بستگی دارد. برای مثال ، آب در شرایط متعارفی (دمای ۲۵درجه سانتیگراد و فشار بخار یک اتمسفر یا ۷۶۰میلی متر جیوه) در ۱۰۰درجه سانتیگراد می جوشد. اما اگر در آب، مقداری قند مثلا به غلظت یک مولال (یک مول در ۱۰۰۰گرم آب) بریزیم، فشار بخار محلول آب قند به اندازه ۱۴میلی متر جیوه کاهش می‌یابد و در نتیجه محلول در ۵۲/۱۰۰درجه سانتیگراد می‌جوشد.

 

کاهش نقطه انجماد

وقتی یک حل شونده غیر فرار در یک حلال حل می‌شود، نقطه انجماد آن کاهش می‌یابد. بنابراین دمای انجماد محلولهای آبی همیشه کمتر از دمای انجماد آب خالص است. استفاده از این خاصیت در رادیاتور اتومبیل می‌باشد که برای جلوگیری از یخ زدن آب رادیاتور اتومبیل در زمستان ، به آن مقداری مایع به نام ضد یخ می‌افزایند. همچنین با اضافه کردن نمک (مانند کلرید سدیم) همراه با شن ریز روی آسفالت خیابانهای شهر ، هیدراته شدن یونهای نمکها مستلزم مصرف مقداری آب است که از ذوب شدن برف فراهم می گردد. بنابراین آب نمک غلیظی فراهم می‌شود که حتی در ۲۰درجه زیر صفر منجمد نمی‌ شود.

 

فشار اسمزی

اگر در ظرف U شکلی ، حلال A از مخلوط حلال و حل شونده (B + A) به وسیله یک غشای نیمه تراوا ، جدا شود، چون فقط حلال از غشا عبور می‌کند، بعد از رسیدن به حالت تعادل ، ارتفاع مایع در قسمت که حل شونده وجود دارد بالا می رود. 

 

اگر به این ستون فشار وارد شود تا سطح مایع در دو طرف یکسان شود، این فشاراسمزی است که به علت حل شدن حل شونده غیر فرار در حلال ایجاد شده است. 

به عکس فرآیند اسمز ، اسمز معکوس گویند که برای شیرین کردن آب استفاده می شود. همچنین برای تعیین جرم مولکولی پلیمرها ، پروتئینها و بطور کلی مولکولهای سنگین از فشار اسمزی استفاده می‌شود.

saman77 بازدید : 117 یکشنبه 07 اردیبهشت 1393 نظرات (0)

 

 

به نام یگانه خالق هستی

 

 

 

موضوع:اسیدها

گردآورنده:محمّدیوسفی

معلم مربوطه:آقای سلامی

 

کلاس دوم تجربی

 

 

 

 

 

دبیرستان شهید رجایی1

اسیدها

 اسیدها موادی ترش مزه اند خاصیت خورندگی دارند شناساگرها را تغییر رنگ می دهند و بازها را خنثی می کنند.

تعریف قدیمی

اسیدها موادی ترش مزه اند خاصیت خورندگی دارند شناساگرها را تغییر رنگ می دهند و بازها را خنثی می کنند.

بازها موادی با مزهٔ گس-تلخ اند حالتی لزج دارند شناساگرها را تغییر رنگ می دهند و اسیدها را خنثی می کنند.

لی بیگ: اسیدها موادی اند که در ساختار خود هیدروژن یا هیدروژن هایی دارند که در واکنش با فلزها توسط یون های فلز جایگزین می شوند.

آرنیوس: اسیدها موادی هستند که ضمن حل شدن در آب یون +H آزاد می کنند. بازها موادی هستند که ضمن حل شدن در آب یون -OH آزاد می کنند.این تعریف فقط به موادی محدود می‌شود که در آب قابل حل باشند. حدود سال ۱۸۰۰، شیمی دانان فرانسوی از جمله آنتوان لاووازیه، تصور می کرد که تمام اسیدها دارای اکسیژن هستند. شیمی دانان انگلیسی از جمله سر همفری دیوی، معتقد بود که تمام اسیدها دارای هیدروژن هستند. شیمی دان سوئدی، سوانت آرنیوس، از این عقیده برای گسترش تعریف اسید استفاده نمود.

 

لوییس: اسیدها موادی هستند که در واکنش های شیمیایی پیوند داتیو می پذیرند. بازها موادی هستند که در واکنش های شیمیایی پیوند داتیو می دهند.تعریف لوییس را با نظریه اوربیتال مولکولی هم می‌توان بیان کرد. به طور کلی، اسید می‌تواند یک جفت الکترون از بالاترین اوربیتال خالی در پایین اوربیتال خالی خود دریافت کند. این نظر را گیلبرت ن. لوییس مطرح کرد. با وجود این که این تعریف گسترده ترین تعریف است، تعریف لوری-برونستد کاربرد بیشتری دارد. با استفاده از این تعریف می‌توان میزان قدرت یک اسید را هم مشخص نمود. از این مفهوم در شیمی آلی هم استفاده می‌شود (مثلاً در کربوکسیلیک اسید)

 

 

 

نگاه اجمالی

بشر از دیر باز با مفهوم ساده اسید آشنایی داشته است. در حقیقت این مواد، حتی قبل از آنکه شیمی به صورت یک علم در آید، شناخته شده بودند. اسیدهای آلی همچون سرکه و آبلیمو و آب غوره از قدیم معروف بودند. اسیدهای معمولی مانند اسید سولفوریک ، اسید کلریدریک و اسید نیتریک بوسیله کیمیاگران قدیم ساخته شدند و بصورت محلول در آب بکار رفتند. برای مثال اسید سولفوریک را جابربن حیان برای نخستین بار از تقطیر بلورهای زاج سبز (FeSO۴.۷H۲O) و حل کردن بخارات حاصل در آب ، بدست آورد.

 

در طی سالیان متمادی بر اساس تجربیات عملی لاووازیه (A.L.Lavoisier) چنین تلقی می‌گردید که اجزاء ساختمان عمومی کلیه اسیدها از عنصر اکسیژن تشکیل گردیده است. اما بتدریج این موضوع از نظر علمی روشن و اعلام گردید که چنانچه این موضوع صحت داشته باشد، بر خلاف عقیده اعلام شده در مورد اکسیژن ، این عنصر هیدروژن است. در حقیقت ، تعریف یک اسید بنا به فرمول اعلام شده از سوی لیبیگ: (J. Von Liebig) در سال ۱۸۴۰عبارت است از

ـ موادی حاوی هیدروژن که می‌توانند با فلزات واکنش نموده و گاز هیدروژن تولید نمایند.

ـ نظریه فوق مدت پنجاه سال مورد استناد بوده است. بعدها با پیشرفت علم شیمی ، مفاهیم جدیدی درباره اسیدها اعلام شده که در زیر به بررسی آنها خواهیم پرداخت.

 

خواص عمومی اسیدها

 

محلول آبی آنها یونهای پروتون آزاد می‌کند

موادی هستند که از نظر مزه ترشند

کاغذ تورنسل را سرخ رنگ می‌کنند

با برخی فلزات مانند آهن و روی ترکیب شده گاز هیدروژن می‌دهند

با قلیاها (بازها) واکنش نموده و املاح را تشکیل می‌دهند

 

با کربنات کلسیم (مثلا به صورت سنگ مرمر) بشدت واکنش دارند، بطوریکه کف می‌کنند و گاز کربنیک آزاد می‌نمایند.

 

اکسیدهای اسیدی

اکسیدهای بسیاری از غیرفلزات با آب واکنش داده و اسید تولید می‌کنند، در نتیجه این مواد را اکسیدهای اسیدی یا ایندرید اسید می‌نامند.

N۲O۵(s) + H۲O → H+ + NO۳-aq

 

مفهوم آرنیوس ، به علت تاکید آن بر آب و واکنشهای محلول‌های آبی ، با محدودیت رو‌به‌روست.

اسید ۲ + باز ۱ <----- اسید ۱ + باز ۲

قدرت اسیدها ، بر میل آنها برای از دست دادن یا گرفتن پروتون استوار است. هر چه اسید قویتر باشد، باز مزدوج آن ضعیفتر است. در یک واکنش ، تعادل در جهت تشکیل اسید ضعیفتر است. اسید پرکلریک ، HClO۴، قویترین اسید است، و باز مزدوج آن ، یعنی یون پرکلرات ، -ClO۴، ضعیفترین باز می‌باشد. H۲، ضعیفترین اسید و باز مزدوج آن یعنی یون هیدرید ، +H قویترین باز می‌باشد

 

نظریه لوییس درباره اسیدها

 

گیلبرت لوییس مفهوم گسترده‌تری برای اسیدها در سال ۱۹۳۸پیشنهاد داد که پدیده اسید - باز را از پروتون رها ساخت. طبق تعریف لوییس ، اسید ماده‌ای است که بتواند با پذیرش یک زوج الکترون از باز ، یک پیوند کوولانسی تشکیل دهد. در نظریه لوییس به مفهوم زوج الکترون و تشکیل پیوند کووالانسی تاکید می‌شود. تعریف لوییس در مورد اسیدها بسیار گسترده‌تر از آن است که برونشتد عنوان نموده است. ترکیبات شیمیایی که می‌توانند نقش اسید لوییس داشته باشند، عبارتند از:

مولکولها یا اتمهایی که هشت‌تایی ناقص داشته باشند

(BH۳ + F- → BH۴-(aq

 

بسیاری از کاتیونهای ساده می‌توانند نقش اسید لوییس داشته باشند.

Cu+۲ + ۴NH۳ → Cu(NH۳)۴+۲

 

برخی از اتم‌های فلزی در تشکیل ترکیباتی مانند کربونیل‌ها که از واکنش فلز با مونوکسید کربن تولید می‌شود، نقش اسید دارند.

Ni + ۴CO → Ni(CO)۴

 

ترکیباتی که اتم مرکزی آنها تونایی گسترش لایه ظرفیتی خود را داشته باشند ، در واکنشهایی که این گسترش عملی شود، نقش اسید دارند، مثلا در واکنش مقابل ، لایه ظرفیتی اتم مرکزی (Sn) از ۸به ۲الکترون گسترش یافته‌است.

SnCl۴ + ۲Cl- → SnCl۶-۲aq

 

برخی ترکیبات به علت داشتن یک یا چند پیوند دو گانه در مولکول ، خاصیت اسیدی دارند. مثلا CO۲

قدرت اسیدی و ساختار مولکولی.

به منظور بررسی رابطه بین ساختار مولکولی و قدرت اسیدی ، اسیدها را به دو نوع تقسیم می‌کنیم: هیدریدهای کووالانسی و اکسی ‌اسیدها

 

هیدریدها

برخی از ترکیبات کووالانسی دوتایی هیدروژن دار اسیدی هستند.دو عامل بر قدرت اسیدی هیدریدیک

عنصرموثر است:الکترونگاتیوی عنصرو اندازه اتمی عنصر.

قدرت اسیدی هیدریدهای عناصر یک گروه، با افزایش اندازه اتم مرکزی افزایش می‌یابد. در تناوب دومNH۳>H۲O>HF در گروه VIبه اینصورت است:

 

H۲Te > H۲Se > H۲S > H۲O

اکسی ‌اسیدها

 

در این ترکیبات ، هیدروژن اسیدی به یک اتم O متصل است و تغییر در اندازه این اتم بسیار ناچیز است. بنابراین عامل کلیدی در قدرت اسیدی این اکسی‌اسیدها، به الکترونگاتیوی اتم Z مربوط می‌شود

.H-O-Z

اگر Z یک اتم غیرفلز با الکترونگاتیوی بالا باشد، سهمی در کاهش چگالی الکترونی پیرامون اتم O (علی رغم الکترونگاتیوی شدید اکسیژن) را دارد. این پدیده باعث می‌شود که اتم اکسیژن، با کشیدن چگالی الکترونی پیوند H-O از اتم H ، تفکیک آن را سرعت ببخشد و ترکیب را اسیدی بکند. هیپوکلرواسید ، .HOCl اسیدی از این نوع است

 

مهمترین اسیدهای قوی

 

مولکولهای این اسیدها و در محلولهای آبی رقیق کاملا یونیزه است. اسیدهای قوی متعارف عبارتند از: اسید کلریدریک ، یدیدریک ، نیتریک ، سولفوریک ، پرکلریک است.

 

مهمترین اسیدهای ضعیف

 

یونیزاسیون این اسیدها در آب کامل نمی‌باشد و هرگز به ۱۰۰%نمی‌رسد. مثال متعارف آنها ، اسید استیک ، اسید کربنیک ، اسیدفلوریدریک ، اسید نیترو و تا حدودی اسید فسفریک است.

 

اسیدها مزه ترشی دارند بعضی اسیدها سمی هستند بعضی باعث سوختگی های شدید می شوند و تعدادی نیز کاملاً بی ضرر به شمار می آیند بعضی اسیدها نیز خوراکی و بسیار مفید هستند ما اسید سیتریک را از پرتقال و لیموترش به دست می آوریم بدنمان هم اسیدهایی را می سازند که به گوارش غذا کمک می کنند.

 

اسید سولفوریک یکی از قوی ترین و مهم ترین اسیدها است که به مقدار فراوان در تولید انواع کود ، فرآورده های نفتی و آهن و فولاد بکار گرفته می شوند آب باتری اتومبیل ها اسید سولفوریک رقیق شده با آب خالص است سایر اسیدهای قوی عبارتند از: اسید نیتریک و اسید کلرید ریک.

 

بازها یا قلیاها موادی هستند که مخالف و ضد اسیدها به شمار می آیند گرچه بعضی بازها از قبیل آهک (هیدروکسید کلسیم) و سود سوز آور همانند اسیدها خیلی فعال و خورنده هستند از بازها در فرآیند های صنعتی استفاده می شوند هیدروکسید منیزیم (مایع یا پودر سفیدی که برای برطرف کردن درد ناشی از حالت اسیدی معده مصرف می کنیم) نمونه ای از یک باز ملایم است بازی که در آن قابل حل می باشد ، قلیا نامیده می شود وقتی یک اسید و یک باز به نسبت مناسب با هم مخلوط می شوند یکدیکر را خنثی می کنند برای مثال اگر اسید کلرید ریک با سود سوز آور مخلوط شود حاصل واکنش آنها نمک معمولی و آب خواهد بود بعضی مواد وقتی با اسید و بازها تماس پی

majid بازدید : 277 یکشنبه 07 اردیبهشت 1393 نظرات (0)

محمد جهانی

۰۱شهید نصیری

عنصر رادیواکتیو پلوتونیوم بیش از تصورات قبلی سرطانزا است.

تحقیقات جدید نشان می‌دهد عنصر رادیواکتیو پلوتونیوم ، بسیاز خطرناکتر از تصورات پیشین است. به گزارش سایت اینترنتی New Scientist (نیوساینتیست) ، گروهی از دانشمندان اعلام کردند راهیابی عنصر پلوتونیومبه بدن انسان تا 10 برابر بیش از تصورات قبلی ، خطر ابتلا به سرطان را افزایش می‌دهد. محققان انگلیسی اعلام کردند تحقیقات جدید نشان می‌دهد، باید برای تعیین استاندارهای جهانی که حد خطرناک تماس با پرتوهای رادیواکتیو پلوتونیوم را تعیین می‌کنند، تجدید نظر کرد.

majid بازدید : 373 یکشنبه 07 اردیبهشت 1393 نظرات (0)

هوالحق

 

 

نام : مجتبی مرادطلب

 

کلاس : 06

 

 

 دیمیتری ایوانویچ مندلیف

 

 

 

متولد : 8 فوریه 1834

 

وفات : 2 فوریه 1906 (72 سال)

 

ملیت : روسیه   

 

علت شهرت : بنیانگذار جدول تناوبی عناصر شیمیایی

 

جوایز : مدال کاپلی (1905)

 

دمیتری ایوانویچ مِندِلیف

 (به روسی: Дмитрий Иванович Менделеев)

 (به انگلیسی: Dmitri Ivanovich Mendeleev)

 شیمی‌دان معروف اهل روسیه است. وی پایه‌گذار جدول تناوبی عناصر شیمیائی موسوم به «جدول مندلیف» است، او بوسیله این جدول توانست وجود تعداد زیادی از عناصر کشف نشده را پیش‌بینی نماید.

 

majid بازدید : 412 یکشنبه 07 اردیبهشت 1393 نظرات (0)

   نام :   مجتبی مرادطلب 

کلاس :   06

شهید نصیری 

 الکتروليز     

فرايندی که طی آن انرژی الکتريکی تبديل به انرژی شيميايی می شود،را الکتروليز می گويند.

اين پديده درسلولی به نام سلولهای الکتروليتی انجام می گيرد.وشامل دوالکترود است که هريک توسط يک رشته سيم رسانا به يک قطب باتری  متصل شده اند ودرمحلول الکتروليت مناسب قرار می گيرند .واکنشی که درسلول الکتروليتی انجام می گيرد انرژی خواه بوده ودرنتيجه محتوای انرژی فراورده بالاترازواکنش دهنده ها می باشد .باتری قرارگرفته درمدار نقش يک پمپ الکترون راداردکه با صرف کارالکتريکی ،الکترون را از آند گرفته ودراختيار کاتد قرار می دهد.

بايد درنظر داشته باشيد که :

mahdi1 بازدید : 14 یکشنبه 07 اردیبهشت 1393 نظرات (0)

مهدی هادی پور/مدرسه شهید نصیری/کلاس05

 

امواج الکترومغناطیسی

دید کلی

در مکانیک کلاسیک و ترمودینامیک تلاش ما بر این است که کوتاهترین وجمع و جورترین معادلات یا قوانین را که یک موضع را تا حد امکان بطور کامل تعریف می‌کنند معرفی کنیم. در مکانیک به قوانین حرکت نیوتن و قوانین وابسته به آنها ، مانند قانون گرانش نیوتن، و در ترمودینامیک به سه قانون اساسی ترمودینامیکرسیدیم. در مورد الکترومغناطیس ، معادلات ماکسول به عنوان مبنا تعریف می‌شود. به عبارت دیگر می‌توان گفت که معادلات ماکسول توصیف کاملی از الکترو‌مغناطیس بدست می‌دهد و علاوه برآن اپتیک را به صورت جزء مکمل الکترومغناطیس پایه گذاری می‌کند. به ویژه این معادلات به ما امکان خواهد داد تا ثابت کنیم که سرعت نور در فضای آزاد طبق رابطه (C = 1/√μ0 ε0) به الکترومغناطیس|کمیتهای صرفا الکتریکی و مغناطیسی مربوط می‌شود.

یکی از نتایج بسیار مهم معادلات ماکسول ، مفهوم طیف الکترومغناطیسی است که حاصل کشف تجربی موج رادیویی است. قسمت عمده فیزیک امواج الکترومغناطیسی را از چشمه‌های ماورای زمین دریافت می‌کنیم و در واقع همه آگاهیهای که درباره جهان داریم از این طریق به ما می‌رسد. بدیهی است که فیزیک امواج الکترومغناطیسی خارج از زمین در گسترده نور مرئی از آغاز خلقت بشر مشاهده شده‌اند. 



img/daneshnameh_up/3/36/EM-wave.gif

 

تعریف امواج الکترومغناطیسی

امواج الکترومغناطیسی یک رده از امواج است که دارای مشخصات زیر است:


  • امواج الکترومغناطیسی دارای ماهیت و سرعت یکسان هستند و فقط از لحاظ فرکانس ، یا طول موج باهم تفاوت دارند
  • در طیف امواج الکترومغناطیس هیچ شکافی وجود ندارد. یعنی هر فرکانس دلخواه را می‌توانیم تولید کنیم.
  • برای مقیاسهای بسامد یا طول موج ، هیچ حد بالا یا پائین تعیین شده‌ای وجود ندارد.
  • از جمله منابع زمینی امواج الکترومغناطیسی می‌توان به امواج دستگاه رله تلفن ، چراغهای روشنایی و نظایر آن اشاره کرد.
  • این امواج برای انتشار خود نیاز به محیط مادی ندارند.
  • قسمت عمده این فیزیک امواج دارای منبع فرازمینی هستند.
  • امواج الکترومغناطیسی جزو امواج عرضی هستند.

گستره امواج الکترومغناطیسی

امواج الکترومغناطیسی از طولانی‌ترین موج رادیویی ، با طول موج‌های معادل چندین کیلومتر ، شروع شده پس از گذر از موج رادیویی متوسط و کوتاه تا نواحی کهموج ، فروسرخ و مرئی امتداد می‌یابد. بعد از ناحیه مرئی فرابنفش قرار دارد که خود منتهی به نواحی اشعه ایکس ، اشعه گاما و اشعه کیهانی می‌شود. نموداری از این طیف که در آن نواحی قراردادی طیفی نشان داده می‌شوند در شکل آمده است که این تقسیم بندی‌ها جز برای ناحیه دقیقا تعریف شده مرئی لزوما اختیاری‌اند. 



img/daneshnameh_up/3/30/amvajeletom001.jpg

 

یکاهای معروف فیزیک امواج الکترومغناطیسی

  • طول موج λ بنا به تناسب مورد ، برحسب متر و همچنین میکرون یا میکرومتر μm ، واحد آنگستروم A و واحد ایکس XU نشان داده می‌شود.

  • با بکار بردن متر به عنوان واحد طول ، طول موجهای نوری بایستی بنا به تناسب برحسب ، nm سنجیده شوند، ولی هنوز آنگستروم یک واحد رسمی بوده و به عنوان متداول ترین واحد درطیف نمایی بکار برده می‌شود.

  • واحد XU ابتدا به شکل مستقل طوری تعریف شده بود که رابطه آن با آنگستروم به صورت 1A = XU 1002.060بود. این واحد اکنون دقیقا معادل 10-10 یا m 10-13 تعریف شده است.

  • علی رغم طبقه بندی عمومی تابش با طول موج ، کمیت مهم از نظر ساختار اتمی و مولکولی فرکانس <ν = c/λvacΔE = hv به اختلاف انرژی ΔE بین دو حالت ساکن دستگاه مربوط است. در طول موجهای کوتاهتر مناسب‌تر آن است که به جای ν واحد متناسب با آن یعنی عدد موجیδ = 1/λvac = c/v جایگزین شود. مؤلفین مختلف واحدهای مختلفی را برای عدد موجیمانند ΄ν ، K و δ بکار می‌برند که همگی یکسان‌اند، در این بحث علامت δ انتخاب شده است، زیرا امکان اشتباه آن با خود ν و یا سایر ثابتها کم است.

  • واحد عدد موجی یک بر سانتیمتر است که گاهی کایزر (K) نامیده می‌شود. واحد کوچکتر آن میلی کایزر است که (mk) واحد مناسبی برای ساختار فوق ریز و کارهای مربوط به عرض خطی است. هر چند که متخصصین طیف نمایی فرکانس رادیویی برای این قبیل کمیتها واحد فرکانس یعنی MHz را بکار می‌برند (MHz 29.979=mk 1 ).

  • انرژی موج را بر حسب واحد الکترون ولت (ev) بیان می‌کنند که انرژیهای فوتونی خیلی بالا (مربوط به طول موجهای خیلی کوتاه) یک الکترون ولت معادل 1.6x10-19J است.

طیف نمایی و امواج الکترومغناطیسی

  • ناحیه مرئی یا نور مرئی (4000-7500 آنگستروم) توسط نواحی فروسرخ از طرف طول موجهای بلند ، فرابنفش از طرف طول موجهای کوتاه ، محصور شده است. معمولا این نواحی به قسمتهای فروسرخ و فرابنفش دور و نزدیک ، با محدوده‌هایی به ترتیب در حدود 30 میکرومتر و 2000 آنگستروم تقسیم می‌شوند که نواحی مزبور دارای شفافیت نوری برای موادی شفاف از جمله منشورها و عدسیها می‌باشند.

  • تا این اواخر ناحیه مرئی متشکل از فروسرخ تا فرابنفش نور توسط گافهایی از نواحی رادیویی و اشعه ایکس سوا می‌شدند که در آنها بر انگیزش و آشکار سازی تابش با طول موجهای متناسب ممکن نبوده است. اختراع رادار در سالهای جنگ (45 - 1938) راه ورود به نواحی امواج خیلی کوتاه رادیویی یا کهموج را باز کرد، در حالی که در همان زمان طیف شناسان فروسرخ دامنه فعالیت خود را تا به نواحی طول موجهای بلندتر توسعه می‌دادند. این دو ناحیه هم اکنون ابعاد کوچکتر از میلیمتر روی هم می‌افتند.

  • گاف طول موج کوتاه ، بخاطر جالب بودنش برای متخصصین فیزیک پلاسما و اختر فیزیک به خوبی پر شده است. هم اکنون حدود طیف نمایی نوری به زیر 2 آنگستروم رسیده است در حالی که مرز پرتوهای ایکس نرم تا 50 آنگستروم می‌رسند. تشخیص بین پرتو نوری و پرتو ایکس ، در ناحیه پوشش فوق الذکر بر منشأ خطوط طیفی مبتنی است.

  • طیف نمایی نوری با گذار‌های الکترونهای خارجی یا ظرفیتی و طیف نمایی اشعه ایکس با گذارهای الکترونهای داخلی مربوط می‌کند. طیفهای نوری ، طول موجهای خیلی کوتاه از الکترونهای خارجی عناصری با درجه یونش بسیار بالا بوجود می‌آیند.




تصویر

 

کاربرد‌های امواج الکترومغناطیسی

rezap بازدید : 12 یکشنبه 07 اردیبهشت 1393 نظرات (0)

 

رضا پورابراهیم/مدرسه شهید نصیری/کلاس05

 

طول موج

طول موج فاصله بین دو نقطه نظیر هم روی یک موج است. بطور معمول طول موج را از یک قله موج تا قله‌ی دیگر آن اندازه می‌گیرند.

دید کلی

بیشتر ما موجهای روی دریا را دیده‌ایم. این موجها بیش از آنکه به ساحل برسند، آب دریا را موج دار می‌کنند. به بالاترین نقطه‌های این موجها قله‌ی موج و به پایین‌ترین نقطه‌های آنها دره‌ی موج می‌گویند. فاصله بین یک قله موج تا قله‌ی دیگر را طول موج می‌نامند. 



تصویر

 

موجهای صدا

همه شکلهای انرژی متحرک ، از جمله صدا ، نور و گرما بصورت موج حرکت می‌کنند. همه‌ی آنها ، درست مانند موجهای دریا ، طول موجی دارند. برای مثال ، وقتی موجهای صدا در هوا حرکت می‌کنند، در فشار هوا تغییر اندکی بوجود می‌آورند. قله‌های موجهای صدا در نقطه هایی واقع می شوند که فشار هوا به بیشترین حد خود می‌رسد. گوشهای ما ، تغییر فشار هوا را دریافت می‌کنند و پیامی به مغز می‌فرستند. 

طول موجهای متفاوت

طول موج نیز مانند بسامد (میزان بالا و پایین رفتن موج) ، روی ویژگیهایی موج تأثیر می‌گذارد؛ زیرا این دو باهم ارتباط نزدیک دارند. برای مثال ، موجهای صدای کم بسامد نسبت به موجهای صدای پر بسامد ، طول موج بزرگتری دارند. همچنین طول موج نور سرخ از طول موج نور آبی بزرگتر است. نور بخشی از گستره‌ی موجهای انرژی است که شامل موجهای رادیویی ، ریزموجها (مایکروویوها) ، پرتوهای فرو سرخ ، پرتوهای فرابنفش ، پرتوهای ایکس و پرتوهای گاما می‌شود که همه‌ی آنها با سرعت 300 هزار کیلومتر بر ثانیه حرکت می‌کنند. همه اینها باهم طیف الکترومغناطیس را تشکیل می‌دهند. 



تصویر

 

طول موج و بسامد

اگر سرعت موج (بر حسب متر بر ثانیه) را بر بسامد آن (بر حسب هرتز) تقسیم کنید، طول موج آن بر حسب متر بدست می‌آید. برای مثال که به سرعت 344 متر بر ثانیه حرکت می‌کند و بسامد آن 688 هرتز است، طول موجی برابر 5/0 متر دارد. 

طیف الکترومغناطیسی

طیف الکترومغناطیسی شامل گستره‌ی بسیار وسیعی از موجهای انرژی است که همه مانند هم حرکت می‌کنند. امواج الکترومغناطیسی طیف بسیار وسیعی از طول موجهای بسیار کوچک تا بسیار بزرگ را در بر‌ می‌گیرند. این امواج را با توجه به اندازه طول موج به هفت دسته‌ مختلف تقسیم‌بندی می‌کنند که شامل امواج گاما با طول موجهایی کوچکتر از سانتیمتر تا امواج رادیویی با طول موج بزرگتر از ۱۰ سانتیمتر را شامل می‌شوند. همانطور که در شکل بالا ملاحظه می‌شود محدوده امواج نوری که قابل دیدن توسط چشم انسان می‌باشند، محدوده بسیار کوچکی از این طیف گسترده است. با حرکت از سمت امواج رادیویی به سمت امواج گاما ، همزمان با کاهش طول موج ، فرکانس آن و در نتیجه انرژی موج افزایش می‌یابد. چون بخشهای گوناگون طیف ، طول موجهای متفاوتی دارند، ویژگیهای آنها نیز متفاوت است. برای مثال موجهای نوری را می‌توانیم ببینیم، و پرتو ایکس بخشی از طیف است که از اجسام جامد ، مانند پوست‌ها ، عبور می‌کنند. 



تصویر

 

کاربرد امواج ، طول موجهای متفاوت

موجهای رادیویی در فرستنده‌های رادیویی کار می‌کنند. موجهای رادیویی با بسامد بسیار زیاد (UAF) مربوط به موجهای تلویزیون هستند. ریزموجهای بلندتر در رادار به کار می‌روند. ریزموجهای کوتاه در اجاق مایکروویو به کار می‌روند. پرتوهای فروسرخ در دوربینهای حساس به گرما به کار می‌روند. نور مرئی از سرخ تا بنفش برای رؤیت به رنگهای مختلف و پرتوهای فرابنفش در تختهای مخصوص حمام آفتاب به کار می‌روند. پرتوهای ایکس برای نگاه کردن به درون اجسام بکار می‌روند و از پرتوهای گاما برای آشکارسازی ترک در فلز به کار می‌رود. پلیس‌ها اغلب برای تشخیص سرعت خودروها از رادار استفاده می‌کنند. موجهای رادار که از تفنگی شلیک می‌شوند، به وسیله‌ی نقلیه‌ای که در حال حرکت است می‌خورند و بر می‌گردند. بسامد موج برگشتی سرعت وسیله‌ی نقلیه را مشخص می‌کند. 

 

 

homan بازدید : 27 یکشنبه 07 اردیبهشت 1393 نظرات (0)

رضا زارعی/مدرسه شهید نصیری/کلاس05

 

اشعه ماوراء بنفش چیست؟

انسان از قرن­ها پیش اعتقاد داشت که نور خورشید می‌تواند از اشاعه عفونت­ها جلوگیری کند. در سال 1877 دو محقق انگلیسی به نام­های دانز و بلونت دریافتند که تکثیر میکروارگانیسم­ها زمانی که تحت تابش نور آفتاب قرار می‌گیرند، متوقف می‌شود. تحقیقات بعدی نشان داد که عامل این پدیده طیف غیرقابل رؤیت اشعه خورشید با طول موج 254 نانومتر است. در پی این کشف، امکان طراحی و ساخت دستگاه­های مولد اشعه باکتری­کش میسر گردید. امروزه این نوع اشعه که باعث جلوگیری از فعالیت باکتری­ها می‌گردد، به عنوان اشعه ماورای بنفش"UV" شناخته شده است. تحقیقات جدید در مورد تأثیر این پرتو بر روی میکروارگانیسم­ها منجر به ساخت سیستم­های جدید ضدعفونی برای مایعات، هوا و همچنین سطح اجسام گردید. بدین ترتیب، ضدعفونی بدون استفاده از مواد شیمیایی میسر شد و ضدعفونی در مواردی که قبلاً مشکل و یا غیر ممکن بود نیز امکان پذیر گردید. امروزه ضدعفونی با اشعه ماورای بنفش، نه فقط به عنوان یک روش با ارزش و موثر شناخته شده، بلکه در خیلی از موارد به عنوان مکمل سایر روش­های ضدعفونی به‌کار گرفته می‌شود.

تعریف ماورای بنفش:

اصطلاح UV برداشتی از نام انگليسی Ultravioletبه مفهوم Ultraدر زبان لاتين "ماورا يا فرا" و Violet به مفهوم "بنفش" که در طيف نور مرئی کوتاه­ترين طول موج را دارا می­باشد.

کاربردهای اشعه فرابنفش:

برای ضدعفونی کردن آب­ها، تخریب نسوج، تخریب باکتری­ها، تحريک­پذيری شديد روی اعضای حسی سطحی، سطوح کار، فضای آزمایشگاه­ها، بیمارستان­ها و صنایع غذایی مورد استفاده قرار می­گیرد.

لامپ‌های فلورسنت اشعه ماورای بنفش:

لامپ‌های فلورسنت قادرند با یونیزه نمودن بخار جیوه، تابش فرابنفش تولید کنند. لایه‌ای فسفری در داخل تیوب همراه با جذب تابش فرابنفش است که آن را تبدیل به نور مرئی می‌نماید.

مزایای کاربرد اشعه ماورای بنفش:

  • رفع موثر آلودگی میکروبی بدون آلودگی شیمیایی و ضدعفونی موثر میکروارگانیسم­های مقاوم در برابر کلر و اُزون
  • عدم ایجاد ترکیبات جانبی مضر و بیماری‌زای شیمیایی
  • عدم ایجاد طعم و بوی شیمیایی
  • عدم تغییر در کیفیت فیزیکی و شیمیایی
  • عدم ایجاد عوارض فوری و حساسیت
  • عدم تخریب محیط زیست، نابودسازی انگل­های مقاوم به ضدعفونی كننده­های شيميايی مانند کریپتوسپور و ژیاردیا

مکانیسم ضدعفونی با اشعه ماورای بنفش:

اشعه ماورای بنفش، میکروارگانیسم­ها را به وسیله اثر متقابل شیمیایی غیرفعال نمی‌کند، بلکه آن­ها را به وسیله جذب نور توسط خودشان غیرفعال می­نماید که باعث واکنش فتوشیمیایی می‌شود. اشعه UV در دیواره سلولی میکروارگانیسم­ها نفوذ کرده و اسیدهای نوکلئیک و دیگر مواد سلولی حیاتی را مورد هدف قرار می­دهد. برای از بین بردن میکروارگانیسم­های کوچک مانند باکتری­ها و ویروس­ها مقداری اشعه ماورای بنفش لازم است، اما برای از­ بین بردن و غیر­فعال کردن پروتوزآها مانند ژیاردیا انرژی اشعه مورد نیاز، چندین برابر انرژی لازم برای غیرفعال کردن باکتری­ها و ویروس­ها می‌باشد.

نحوه مقاومت بدن در برابر اشعه ماورای بنفش

جهت حفاظت از اثرات مخرب تابشماورای بنفش بدن انسان گاهی (با توجه به نوع پوست و نژاد)، از خود نوعی رنگدانه (پیگمان) قهوه‌ای آزاد می‌کند.

توصیه‌­های علمی:

امروزه بعضی از محصولات به اصطلاح Sunscreenمانند ضدآفتاب‌ها دارای ترکیباتی از قبیل دی‌اکسیدتیتانیوم، اکسید روی و آووبنزونهستند که باعث محافظت بدن در برابر تابش انواع اشعه­ها می­شوند. همچنین استفاده از عینک­هایی با لنز­های پلاستیکی ترجیحاً از جنس پلی‌کربنات به جای لنزهای شیشه­ای توصیه می­شود.

 

 

homan بازدید : 66 یکشنبه 07 اردیبهشت 1393 نظرات (0)

رضا زارعی/مدرسه شهید نصیری/کلاس05

 

برنز

برنز بطور معمول ترکيبي است از مس و قلع و ممکن است حاوي مقادير کمي از سرب يا آرسنيک باشد. نسبت قلع به مس معمولا بين 5 درصد به 15 درصد است. برنز تا حدودي يک لغت عمومي است که به طيف گسترده اي ازآلياژهاي مس منسوب ميشود. با وجود اينکه مس و قلع بطور طبيعي بوجود مي آيند، اين دو سنگ معدن به ندرت با هم يافت ميشوند. برنز زنگار بوجود مي آورد اما مثل مس خالص زنگ نميزند. گرچه واژه برنز در ابتدا به هرگونه آلياژ مس که حاوي قلع بود اطلاق ميشد، اکنون عموما براي توصيف انواع آلياژهاي مس شامل برنز آلومينيوم، برنز منگنز يا برنز سيليکون استفاده ميشود.

قلع مورد استفاده در آلياژ برنز محصول فرعي کسيتريت( cassiterite)معدني است که يک اکسيد قلع معدني ميباشد وبا دارا بودن حدود 5 درصد قلع، آن را به يک محصول نسبتا نادر تبديل ميکند. کسيتريت در رسوبات پلاسر يا آبرفتي يافت مي شود.

 

عصر برنز

عصر برنز، دوره اي در توسعه يک تمدن بود؛ درست زماني که در صنعت فلزکاري تکنيک هايي براي ذوب و خالص سازي مس ، قلع و آرسنيک از سنگهاي معدني طبيعي، بوجود آمده بودند. اولين آلياژ فلز برنز، از مس و آرسنيک در سال 4200 قبل از ميلاد مسيح درآسياي صغير (آناتوليا) بوجود آمد و آلياژهاي مس - قلع توسط سومريان باستان در سال 3500 پيش از ميلاد مسيح (اوايل عصر برنز 3500-2000 پيش از ميلاد مسيح) در دره دجله و فرات عراق امروزي حاصل شدند. ساکنان درهايندوس (رود سند) نيزعصر برنزخودرادر حدود3300 سالقبلازميلادآغازکردند.

با کشف برنز جنگاوري به طرز چشمگيري تغيير کرد. با اضافه کردن آرسنيک و قلع، سختي مس به طور قابل توجهي افزايش يافته بود و هيچيک ازگرزهاي سنگي آن دوران با تسليحاتي که اين ترکيب توليد مي کرد، برابري نمي کردند. برنز همچنين در زره نيز استفاده شد که نسبت به ضربات سلاح ها غيرقابل نفوذ بود.

برنز در حدود سال 2000 پيش از ميلاد مسيح در چين پديدار شد. ريخته گري هاي اوليه برنز چيني با ريختن فلزمايعگداختني در قالب هاي شني، خاکي يا سنگي ساخته شدند. در طول اين دوران برنز براي ساختن اشياء هنري، سکه ها، جواهر و ابزار بکار مي رفت. برنز همچنين به طور گسترده در مصر باستان استفاده مي شد و ريخته گري ها براي ساخت قطعات تزئيني بزرگ معماري، بکار برده مي شدند. برنز همچنين بخاطر اينکه سخت تر از آهنوبسيار مقاوم در برابرخوردگي بود، براي ساخت سلاح مورد استفاده قرار مي گرفت.

mahdi1 بازدید : 76 یکشنبه 07 اردیبهشت 1393 نظرات (0)

مهدی هادی پور/مدرسه شهید نصیری/کلاس05

 

انواع برنج

برنج دریاسالار: شامل ۳۰٪ روی همراه با ۱٪ قلع

Description: http://www.tehranshemsh.com/brass/brass3.gifبرنج آلفا: شامل کمتر از ۳۵٪ روی، که از آن می توان برای کارهایی با فشار بالا، ضربه و سرد استفاده کرد. ساختار کریستالی این نوع برنج FCC است .

Description: http://www.tehranshemsh.com/brass/brass5.gifبرنج بتا: شامل ۴۵٪ تا ۵۰٪ روی که سختی و مقاومت بیشتری نسبت به گرما و فشار و ضربه دارد.

 برنج آلفاـبتا: شامل ۳۵٪ تا ۴۵٪ روی مناسب برای گرما

Description: http://www.tehranshemsh.com/brass/Brass1.gifبرنج آلومینیومی: که شامل آلومینیوم است و مقاومت زیادی در برابر خوردگی دارد که از آن در ساخت سکه های اروپایی استفاده می کنند .

 برنج آرسنیکی: شامل آرسنیک. آلومینیوم است که در ساخت دیگ‌های بخار کاربرد دارد .

برنج فشنگی: شامل ۳۰٪ روی برنج معمولی: شامل ۳۷٪ روی، ارزان و مناسب برای کارهای بدون گرما (سرد)

برنج عالی: شامل ۳۵٪ روی و ۶۵٪ مس، با قابلیت انعطاف پذیری بالا، استفاده شده در ساخت فنر و پیچ ها.

Description: http://www.tehranshemsh.com/brass/brass4.gifDescription: http://www.tehranshemsh.com/brass/brass6.gif برنج سربی: همان برنج آلفاـبتا همراه با مقداری سرب است.

برنج پست: شامل ۲۰٪ روی است، با رنگ زرد نزدیک به طلا

برنج دریایی: شبیه به برنج دربا سالار با ۴۰٪ روی و ۱٪ قلع

برنج سفید: شامل بیش از ۵۰٪ روی ، بسیار شکننده

برنج طلایی: که نرم ترین فلز برنج است با ۹۵٪ مس و ۵٪ روی که در ساخت مهمات جنگی کاربرد دارد.

آلیاژ برنج

برنج ها آلیاژهای مس وروی می باشند که براساس تغییرات ترکیبی ورنگ ظاهری به برنج زرد وبرنج قرمز وبرنج سرب،برنج سیلیسیم،برنج قلع،برنج های نیکلی(ور شو)تقسیم می شوند.
خواص فیزیکی:
٣٢ % در درجه حرارت انجماد و در حدود / حد حلالیت روی در مس برابر ۵مهم 
α ٣۵ % در درجه حرارت محیط می باشد از این رو فاز محلول جامد ترین شبکه میکروسکوپی موجود در آلیاژ برنج است. و همانطور که در دیاگرم مس وروی نشان داده شده است

اکثر آلیاژهای برنج دارای دامنه انجماد بسیار کم بوده ووجود فلزات دیگر در مس عملاً باعث پائین آمدن نقطه ذوب می شود و هر قدر دامنه انجماد کمتر باشد،سیالیت آلیاژ بهتر خواهد بود ولی این امر معمولاً با زیادشدن حجم انقباض متمرکز همراه است و کاملاً برای ریخته گری مناسب می باشند واز نقطه نظر شبکه محلولهای جامد مس و روی دارای خواص زیر می باشند:
الف)محلول جامد 
α : این شبکه در سرما چکش خوار می باشد ولی چکش خواری آن در گرما  منوط به نداشتن سرب در آلیاژ است(به دلیل تشکیل سرب مایع در گرما)
  ب)محلول جامد 
β  : در این شبکه وجود سرب کمتر مزاحم می باشد وشبکه خاصیت چکش خواری  خود را در گرما حفظ می کند.
  ج)محلول جامد  : 
γاین شبکه سخت و شکننده است و خواص عمومی شبکه را دارد .
باید مقدار فلز روی از γ بوده وبرای به وجود آمدن شبکه β اگر مقدار فلز روی از ۵٠ %کمتر ابشد آلیاژ در ناحیه
۵٠ %تجاوز کند.به همین دلیل مقدار فلز روی در برنج ها مواره کمتر از ۴٧ %است ورنگ برنج به مقدار روی
بستگی دارد.
تشکیل شده باشد در این صورت خواص مکانیکی با افزایش فلزروی بالا می
α اگر برنج تنها از محلول جامد
تشکیل شده باشد 
β و α رود سپس با افزایش بیش از حد روی دوباره کاهش می یابد.اگر برنج از شبکه
مقدار درصد تغییر شکل به کم شدن ادامه می دهد در حالیکه سختی پیوسته زیاد می شود.
در جدول زیر آورده شده است: 
α تاثیر روی در محلول جامد
دسته بندی آلیاژهای مس:
آلیاژهای مس مانند آلومینیم به دو دسته آلیاژهای کارپذیر(نوردی)وریختگی تقسیم می گردند.هر دسته از
این آلیاژها نیزبر حسب شرایط ترکیبی وعناصر آلیاژی می توانند عملیات حرارتی پذیر یا عملیات حرارتی
ناپذیر باشند.
انواع برنجهای کارپذیر(نوردی)فقط حاوی مس وروی می باشند وعناصردیگردرحد ناخالصی در آنها وجود دارد
وبرنجهای آلیاژی علاوه بر مس و روی حاوی عناصر دیگری نظیر سیلیسم،آهن،
قلع،و سرب و… نیز هستند وبیشتر از طریق ریخته گری شکل می گیرند.
برنجهای مخصوص:
اگر به آلیاژ مس وروی سایر عناصر اضافه شوند به طورکلی خواص مکانیکی برنج بالا می رود واین نوع
را 
α+β ویا α آلیاژها را برنج مخصوص می نامند.و بالطبع نمی توان فقط ساختمانهای ساده محلول جامد
انتظار داشت.
عناصری مانند سرب،قلع،آهن،منگنز،نیکل وغیره دربرنج همواره به عنوان عنصر آلیاژی یا عنصر ناخالصی
١% تجاوز نمی کند. – حضور دارند.ومقدار این عناصر هیچگاه از حدود ٢
آلیاژ مس و روی را برنج می گویند. بر حسب درصد روی در مس می توان برنجهای متفاوتی را به دست آورد.
هر چه درصد روی در مس افزایش یابد سختی و استحکام این آلیاژ بیشتر می شود و رنگ برنج از قرمز به
٧ گرم بر سانتی متر مکعب در مذاب / ۴١٩ و چگالی ١۴ 
C زرد کم رنگ متمایل می شود. روی با نقطه ذوب
٨ گرم بر سانتی متر مکعب معمولاً به صورت غیر همگن یا غیر / ١٠٨٣ و وزن مخصوص ٩ 
C مس با نقطه ذوب
یکنواخت قرار می گیرند که مشکل اساسی جدایش را به وجود می آورد . چون روی تا ٣٢ % می تواند در
میگویند که شامل یک ساختمان 
α در مس وجود داشته باشد به آن برنج αدمای محیط به صورت تک فازی
تجارتی تا ٣۶ % روی دارند و 
α تک فازی کریستالهای محلول جامد روی و مس می باشد. معمولاً برنجهای
به دو گروه تقسیم می شوند :
قرمز که شامل ۵ الی ٢٠ % روی می باشد. 
α زرد که شامل ٢٠ الی ٣۶ % روی می باشدو برنج α برنج
در تهیه آلیاژهای برنج می توان دو روش را مورد استفاده قرار داد:
١-از هاردنر مس و روی استفاده نمود. لازم است در این روش مس را تحت فلاکس پوششی ذوب کرده و
بعد هاردنر را در چند مرحله به مذاب وارد نمود.
٢-استفاده از روی خالص که لازم است مس را تحت فلاکس پوششی ذوب نموده فوق گداز آن را پایین
آورده و روی را در چند مرحله به مذاب وارد نموده و کاملاً آن را مخلوط نمود. از دیاگرام مس و روی می توان
فهمید که دامنه انجماد برنجها کوتاه و سیالیت خوبی دارند.
برای ساخت برنج ٢٠ % روی لازم است مس مورد نیاز را همراه با فلاکس پوششی که شیشه
می باشد ذوب نموده و چون از روی خالص استفاده می شود بایستی فوق گداز را پایین آورده و این مقدار
روی را در چندین مرحله ( معمولاً در ٣ نوبت مناسب است ) به مذاب وارد کنیم. به دلیل نقطه ذوب و وزن
٧ گرم بر سانتی متر مکعب می باشد و / ١٠٨٣ و چگالی آن ٩ 
C مخصوص متفاوت این دو فلز که نقطه مس
٧ گرم بر سانتی متر مکعب باعث جدایش این دو فلز از یکدیگر / ۴١٩ و وزن مخصوص ١۴ 
C روی با نقطه ذوب
شده و پدیده جدایش را به وجود می آورند و لذا بایستی حتماً این مذاب را توسط ابزار خوب مخلوط نموده و
اقدام به ذوب ریزی نمود.

برنجها آلياژهای مس وروی می باشند که براساس تغييرات ترکيبی ورنگ ظاهری به برنج زرد وبرنج قرمز وبرنج سرب،برنج سيليسيم،برنج قلع،برنج های نيکلی(ور شو)تقسيم می شوند.

خواص فيزیکی:

٣٢ % در درجه حرارت انجماد و در حدود / حد حلاليت روی در مس برابر ۵ مهم α ٣۵ % در درجه حرارت محيط می باشد از این رو فاز محلول جامد ترین شبکه ميکروسکوپی موجود در آلياژ برنج است. و همانطور که در دیاگرم مس وروی نشان داده شده است اکثر آلياژهای برنج دارای دامنه انجماد بسيار کم بوده ووجود فلزات دیگر در مس عملاً باعث پائين آمدن نقطه ذوب می شود و هر قدر دامنه انجماد کمتر باشد،سياليت آلياژ بهتر خواهد بود ولی این امر معمولاً با زیاد شدن حجم انقباض متمرکز همراه است و کاملاً برای ریخته گری مناسب می باشند واز نقطه نظر شبکه محلولهای جامد مس و روی دارای خواص زیر می باشند:

این شبکه در سرما چکش خوار می باشد ولی چکش خواری آن در گرما : αالف)محلول جامد منوط به نداشتن سرب در آلياژ است(به دليل تشکيل سرب مایع در گرما) در این شبکه وجود سرب کمتر مزاحم می باشد وشبکه خاصيت چکش خواری : β ب)محلول جامد خود ار در گرما حفظ می کند. را دارد γ این شبکه سخت و شکننده است و خواص عمومی شبکه :γج)محلول جامد

باید مقدار فلز روی از γ بوده وبرای به وجود آمدن شبکه β اگر مقدار فلز روی از ۵٠ %کمتر ابشد آلياژ در ناحيه ۵٠ %تجاوز کند.به همين دليل مقدار فلز روی در برنج ها مواره کمتر از ۴٧ %است ورنگ برنج به مقدار روی بستگی دارد. تشکيل شده باشد در این صورت خواص مکانيکی با افزایش فلزروی بالا می α اگر برنج تنها از محلول جامد تشکيل شده باشد β و α رود سپس با افزایش بيش از حد روی دوباره کاهش می یابد.اگر برنج از شبکه مقدار درصد تغيير شکل به کم شدن ادامه می دهد در حاليکه سختی پيوسته زیاد می شود. در جدول زیر آورده شده است: α تاثير روی در محلول جامد

دسته بندی آلياژهای مس:

آلياژهای مس مانند آلومينيم به دو دسته آلياژهای کارپذیر(نوردی)وریختگی تقسيم می گردند.هر دسته از این آلياژها نيزبر حسب شرایط ترکيبی وعناصر آلياژی می توانند عمليات حرارتی پذیر یا عمليات حرارتی ناپذیر باشند.انواع برنجهای کارپذیر(نوردی)فقط حاوی مس وروی می باشند وعناصردیگردرحد ناخالصی در آنها وجود دارد وبرنجهای آلياژی علاوه بر مس و روی حاوی عناصر دیگری نظير سيليسم،آهن،

 

rezap بازدید : 83 یکشنبه 07 اردیبهشت 1393 نظرات (0)

رضا پورابراهیم/مدرسه شهید نصیری/کلاس05

سوپر آلیاژها

معرفي تكنولوژي سوپرآلياژ و ميزان كاربرد آن در جهان و ايران
دكتر هاشمي مشاور سازمان گسترش و نوسازي صنايع ايران در زمينة معرفي مواد جديد مطالبي را بیان نموده است كه قسمت اول آن مربوط به معرفي سوپر آلياژها ميباشد و در زیر آورده شده :
معرفي وكاربردها 
سوپرآلياژها در واقع آلياژهايي مقاوم در برابر حرارت، خوردگي و اكسيداسيون ميباشند كه به لحاظ تركيب شيميايي شامل سه گروه پايه نيكل، نيكل-آهن و پايه كبالت ميباشند. اولين استفاده از سوپرآلياژها در ساخت توربينهاي گازي، طرحهاي تبديل ذغال‌سنگ، صنايع شيميايي و صنايعي كه نياز به مقاومت حرارتي و خوردگي داشتهاند بوده است. 

امروزه تناژ وسيعي از قطعات مصرفي در توربينهاي گازي از جنس سوپرآلياژها ميباشند. در ذيل به بعضي از مصارف اين قطعات اشاره شده است: 

- توربينهاي گازي هواپيما

- توربينهاي بخار نيروگاه‌هاي توليد برق

- ساخت قالب‌هاي ريختهگري و ابزارهاي گرمكار

- مصارف پزشكي و دندانپزشكي

- فضاپيماها

- تجهيزات عمليات حرارتي

- سيستمهاي نوتروني و هستهاي

- سيستمهاي شيميايي و پتروشيمي

- تجهيزات كنترل آلودگي

- تجهيزات و كورههاي نورد فلزات

- مبدلهاي حرارتي تبديل ذغال سنگ

به منظور انتخاب سوپرآلياژها جهت مصرف در كاربردهاي فوق لازم است خواص فني نظير شكلپذيري، استحكام، مقاومت خزشي، استحكام خستگي و پايداري سطحي در نظر گرفته شوند. 

تقسيم‌بندي سوپرآلياژها برحسب روش توليد 

با توجه به نحوة توليد ميتوان سوپرآلياژها را به چهار گروه كلي تقسيم‌بندي نمود كه عبارتنداز:

1) سوپرآلياژهاي كارپذير 

سوپرآلياژهاي كارپذير در حقيقت گروهي از سوپر آلياژها هستند كه قابليت كار مكانيكي دارند و از روشهاي مكانيكي ميتوان به آنها شكلداد. به منظور توليد مقاطع معيني از سوپرآلياژهاي كارپذير، اولين گام آن است كه شمشهاي سوپرآلياژها به دليل حضور عناصر فعال(عناصري كه سريع در مجاورت هوا اكسيد ميشوند) در شرايط خاصي تهيه شوند. فرايندهاي ذوب در خلاء در مورد تهيه سوپرآلياژهاي پايه نيكل و پايه آهن جزء ضروريات مي­باشد. اما در مورد سوپرآلياژهاي پايه كبالت امكان ذوب در هوا وجود دارد. اين فرايند به طور خلاصه شامل ذوب القائي تحت خلاء (VIM)، ذوب مجدد قوس الكتريكي در خلاء (VAR) و ذوب مجدد با سرباره (ESR)، فرايندهاي ترمومكانيكي و 


متالورژي پودر ميباشند. 

پس از تهيه شمشآلياژهاي كارپذير به يكي از روش‌هاي فوق عمليات شكلدهي صورت ميگيرد. عمليات شكل­دهي سوپرآلياژها نيز ميتواند توسط عمليات متداول كليه آلياژهاي فلزي انجام پذيرد. سوپرآلياژهاي پايه آهن، كبالت و نيكل را ميتوان به صورت مفتول، صفحه، ورق، نوار، سيم و اشكال ديگر توسط فرايندهاي نورد، اكستروژن و آهنگري توليد نمود. معمولاً عمليات شكلدهي در دماي بالا صورت ميگيرد و تعداد كمي از سوپرآلياژها را ميتوان به صورت سرد شكل‌دهي نمود. ساختارهاي يكنواخت و ريزدانهاي كه از شكل‌دهي سرد حاصل ميشود نسبت به ساختارهاي شكلدادن گرم ارجحيت دارند. 

عمليات ترموديناميكي بر روي سوپرآلياژها معمولاً در حدود 1000-950 درجه سانتيگراد انجام ميشود كه به اين ترتيب در حين شكل دادن عمليات حرارتي نيز صورت ميگيرد. 

2) سوپرآلياژهاي متالورژي پودر 
بسياري از انواع آلياژهاي كارپذير از طريق فرايندهاي متالورژي پودر توليد ميگردند. امروزه قطعات متالورژي پودر از جنس سوپرآلياژ با دانسيته كامل از طريق روش‌هاي اكستروژن يا پرسكاري ايزواستاتيك گرم (HIP) توليد ميگردند. مهمترين اين قطعات قيچيها و سوزنهاي جراحي ميباشند. 

فرايندهاي متالورژي پودر به‌دليل داشتن مزاياي زير بر فرايندهاي ريختهگري ترجيح داده ميشوند هر چند كه معايبي را نيز به همراه خواهند داشت: 

- يكنواختي در تركيب شيميايي و ساختار كريستالي

- ريز بودن اندازه دانههاي كريستالي

- كاهش جدايشها

- راندمان بالاتر از نظر مصرف مواد

اما مشكلاتي نظير حضور گاز باقيمانده، آلودگي كربني و آخال‌هاي سراميكي باعث ميگردد كه در برخي موارد نيز فرايندهاي شمش‌ريزي و ترمومكانيكي متداول صورت پذيرند. 

3) سوپرآلياژهاي پلي‌كريستال ريختگي 

وجود محدوديت‌هاي تكنولوژيكي سبب محدود شدن رشد صنعت سوپرآلياژ مي‌گردد و بنابراين با پيدايش فرايندهاي جديد توليد، اين صنعت نيز روز به روز توسعه مييابد.





تعداد زيادي از فرايندها را ميتوان در توليد قطعات سوپرآلياژ با اندازه نزديك به قطعة نهايي مورد استفاده قرار داد اما اساساً اين قطعات توسط فرايند ريختهگري دقيق توليد ميگردند. 

محدوده تركيب شيميايي سوپرآلياژهاي ريختگي بسيار گستردهتر از سوپرآلياژهاي كارپذير بوده و بنابراين خواص متنوعتري نيز از اين طريق قابل حصول خواهند بود هر چند كه انعطاف‌پذيري و مقاومت به خستگي در فرآيندهاي كار مكانيكي بهتر از ريختهگري خواهد بود، اما امروزه با توسعه فرآيندهاي جديد ريختهگري و انجام عمليات حرارتي متعاقب، خواص سوپرآلياژهاي ريختگي نيز افزايش يافته است. 

4) سوپرآلياژهاي تككريستالي انجماد جهتدار 
به‌منظور توسعه توربينهاي گازي مصرفي در هواپيماها و افزايش دماهاي كاري و كارآيي موتورها، به‌طور مداوم روشهاي توليد سوپرآلياژها در حال بهبود است. 

قسمت‌هاي بحراني توربينها معمولاً شامل پرههاي تحت فشار بالا، هواكشها و ديسكها ميباشند. در طول 15 سال گذشته تحقيقات بسياري در زمينه افزايش راندمان توربينها صورت گرفته است و عمده اين تحقيقات بر امكان افزايش دماي ورودي، فشاركاري و كاهش هزينههاي توليد استوار بوده است. توسعه فرايند انجماد جهتدار به‌منظور توليد تك‌كريستالي‌هاي ريختگي سبب شده تا بتوان از اين طريق پرههاي توربين را با دانههاي جهتدار در راستاي اعمال تنش توليد نمود و به اين ترتيب علاوه بر خواص پايدار حرارتي، استحكام خستگي، استحكام خزشي و انعطاف‌پذيري نيز افزايش يابند. 

با توسعه اين تكنولوژي، امروزه در توربينهاي مصرفي در نيروگاه‌هاي برق نيز از قطعات تك‌كريستال از جنس سوپرآلياژها استفاده به‌عمل ميآيد. 

در سالهاي اخير شركت هواپيمايي PWA يكي از پيشگامان توليد سوپرآلياژها مي‌باشد و توليد آلياژهاي PWA 1480 به صورت تك‌كريستال توسط اين شركت، سبب افزايش عمركاري هواپيماي جنگي F-100 گرديده است. 

تقسيم‌بندي سوپرآلياژها برحسب تركيب شيميايي 

به طور كلي اين آلياژها شامل سه گروه پايه نيكل، پايه آهن و پايه كبالت ميباشند كه بسته به درجه حرارت كاربردي مورد استفاده قرار ميگيرند 

1) سوپرآلياژهاي پايه نيكل 
امروزه آلياژهاي نيكل در حالت‌هاي "تك‌فازي"، "رسوب سختي شده" و "مستحكم‌شده توسط رسوبات اسيدي و كامپوزيتها" در مصارف صنعتي مختلف مورد استفاده قرار ميگيرند. 

سوپرآلياژهاي پايه نيكل پيچيدهترين تركيباتي ميباشند كه در قطعات دماي بالا به كار ميروند. در حال حاضر 50 درصد وزن موتورهاي هواپيماهاي پيشرفته از جنس اين آلياژها ميباشد. خصوصيات اصلي آلياژهاي نيكل، پايداري حرارتي و قابليت مستحكم شدن ميباشد. 

بسياري از اين آلياژها حاوي 10 الي 20 درصد كرم، حداكثر 8 درصد آلومينيوم و تيتانيم، 5 تا 15 درصد كبالت و مقادير كمي موليبدن، نيوبيم و تنگستن ميباشند. 

دو گروه اصلي از آلياژهاي آهن- نيكل كه ميزان نيكل آنها بيشتر از مقدار آهن است عبارت از گروهIncoloy 706 و Inconel 718 ميباشند. 

اين آلياژها معمولاً حاوي 3 تا 5 درصد نيوبيم ميباشند و در رديف آلياژهاي پايه نيكل قرار ميگيرند. آلياژهاي پايه نيكل معمولاً تا دماي 650 درجه سانتيگراد استحكام خود را حفظ ميكنند. اما در دماهاي بالاتر به سرعت استحكام خود را از دست ميدهند. 

2) سوپرآلياژهاي پايه آهن 

سوپرآلياژهاي پايه آهن نشات گرفته از فولادهاي زنگ نزن آستينتي ميباشند كه داراي زمينهاي از محلول جامد آهن و نيكل بوده و براي پايداري زمينه نياز به حداقل 25 درصد نيكل است.





- گروه‌هاي متعددي از اين آلياژها تاكنون مشخص گرديدهاند كه هر يك با مكانيزمهاي خاصي مستحكم ميشوند. برخي از اين آلياژها نظير 57-V و 286-A حاوي 25 تا 35 درصد وزني نيكل ميباشند و استحكامشان به دليل حضور آلومينيوم و تيتانيم مي‌باشد. 

- گروه دوم آلياژهاي پايه آهن كه آلياژهايX750 و Incoloy901 نمونههاي آن ميباشند، حداقل 40 درصد وزني نيكل داشته و همانند گروههاي با نيكل بالاتر استحكام بخشي توسط سختي رسوبي صورت ميگيرد. 

- گروه ديگر اين آلياژها بر پايه آهن- نيكل- كبالت ميباشند و استحكام اين گروه در محدوده 650 درجه سانتيگراد مناسب بوده و ضريب انبساط حرارتي آنها پايين ميباشد. اين آلياژها شامل Incoloy با شمارههاي 903، 907، 909، 1-1- PyrometCTX و 3-PyrometCTX و غيره ميباشند. 

3) سوپرآلياژهاي پايه كبالت 
سوپرآلياژهاي كارپذير پايه كبالت برخلاف ساير سوپرآلياژها مكانيزم استحكام بخشي متقاوتي دارند و خواص حرارتي خوبي در دماي حدود 1000 درجه سانتيگراد خواهند داشت. 

سوپرآلياژهاي پايه كبالت حاوي كرم، مقاومت به خوردگي و اكسيداسيون خوبي داشته و هم چنين قابليت جوشكاري و مقاومت به خستگي حرارتي آنها نسبت به آلياژهاي پايه نيكل بالاتر ميباشد. از طرف ديگر امكان ذوب و ريختهگري اين آلياژ، در هوا با اتمسفر آرگون مزيت ديگري نسبت به ساير سوپرآلياژها كه نياز به خلاء دارند مي­باشد.

سه گروه اصلي آلياژهاي پايه كبالت را ميتوان به صورت ذيل در نظر گرفت: 

- آلياژهايي كه در دماهاي بالا در محدودة 650 تا 1150 درجه سانتيگراد مورد استفاده قرار ميگيرند كه شامل آلياژهايS-816، 25HAYNES، 188 25HAYNES، 55625HAYNES، 50UMCO ميباشند.

- آلياژهايي كه تا حدود 650 درجه سانتيگراد به كار ميروند نظيرTN3MP، 159 MP

- آلياژ مقاوم به سايش B 6 Stellite

آلياژ 2525HAYNES بيشترين كاربرد را در ميان آلياژهاي كارپذير پايه كبالت داشته اشت و در ساخت قطعات گرمكار نظير توربينهاي گازي، اجزاء راكتورهاي هستهاي، ايمپلنت‌هاي جراحي و غيره مورد استفاده قرار گرفتهاند. آلياژهاي گروه پايه كبالت كه شامل كرم- تنگستن- كربن ميباشند معروف به آلياژهاي Satellite بوده كه به شدت مقاوم به سايش ميباشند. 

اين گروه معمولاً در مواردي كه مقاومت سايشي در درجه حرارت‌هاي بالا مورد نياز باشد به كار ميروند. در واقع سختي اين مواد در دماي بالا حفظ شده و در مواقعي كه نميتوان در حين كار روغنكاري انجام داد به خوبي مورد استفاده قرار ميگيرند. 

بازار سوپرآلياژها

شايد بتوان گسترش بازار سوپرآلياژها را در دنيا مربوط به صنايع هوا _ فضا در نظر گرفت كه با توجه به رشد روزافزون اين صنعت و قطعات يدكي آن در سطح جهان پيش بيني ميگردد كه تنها بازار قطعات يدكي هواپيماها بالغ بر 4،5 ميليارد دلار باشد، بررسيها حاكي از آنست كه تا سال 2015 تعداد 16000 فروند هواپيماي جديد با موتورهاي توربين گازي وارد بازار ميشوند كه نيمي از وزن اين 

موتورها از جنس سوپر آلياژ خواهد بود. 

بر اساس آمارهاي تخميني موجود در ايران، سوپرآلياژها سالانه به ميزان 80 ميليون دلار در سه وزارتخانة نفت، نيرو و دفاع مورد استفاده قرار ميگيرند.

 

homan بازدید : 16 شنبه 06 اردیبهشت 1393 نظرات (0)

رضا زارعی/مدرسه شهید نصیری/کلاس05

CFC ها موادی هستند که صدها مصرف گوناگون دارند. زیرا آنها تقریبا غیر سمی و مقاوم در برابر شعله بوده ، براحتی تجزیه نمی‌شوند. به خاطر چنین پایداری ، آنها تا 150 سال باقی خواهند ماند. گازهای CFC به آرامی تا ارتفاعات 40 کیلومتری صعود کرده و در آنجا تحت نیروی عظیم تشعشعات ماورای بنفش خورشید شکسته شده ، عنصر شیمیایی کلر را آزاد می‌کنند.

بعد از آزادی هر اتم کلر قبل از برگشت به زمین که سالها طول می‌کشد، حدود صد هزار مولکولاوزون را از بین می‌برد. سه و شاید پنج درصد لایه ازن در سطح جهان تاکنون توسط گازهای CFCتخریب شده است.

 

با تخریب ازن در لایه‌های بالای اتمسفر ، کره زمین اشعه ماورای بنفش دریافت می‌کند که موجب بروز سرطان پوست ، بیماری آب مروارید چشم و تضعیف سیستم دفاعی بدن می‌شود. با نفوذ بیشتر اشعه ماورای بنفش از لایه‌های اتمسفر ، اثرات آن روی سلامتی بدتر شده ، بهره‌دهی محصولات کشاورزی و جمعیت ماهی‌ها کاهش خواهد یافت و آسایش هر فرد روی این سیاره تحت تاثیر قرار خواهد گرفت.

تهدید اکوسیستم‌ها

کشورهای پیشرفته بیش از هفتاد هزار ماده شیمیایی مختلف تولید می‌کنند که بیشتر آنها بطور کامل از نظر ایمنی آزمایش نشده‌اند. استفاده نامحتاطانه از این مواد ، مواد غذایی و آب و هوای ما را آلوده کرده ، اکوسیستمهایی را که ما به آنها متکی هستیم، شدیدا" تهدید می‌کند.

راهیابی مواد شیمیایی به محیط زیست

مواد شیمیایی به بخش جدا نشدنی از زندگی روزانه ما تبدیل گشته‌اند. ما از وسایل رفاهی مانندپلاستیکها ، پودرهای رختشویی و آروزولها که از مواد شیمیایی ساخته شده‌اند، استفاده می‌کنیم. ولی اغلب از هزینه پنهانی که ناشی از آنهاست بی‌خبریم. نهایتا آنها از طریق محلهای دفن زباله ، زهکشیها و فاضلابها به آب و یا زمین راه پیدا می‌کنند.

مواد سمی در پلاستیک‌ها

اگر چه مصرف کنندگان به ندرت محصولات پلاستیکی را که روزانه ساخته می‌شود و بسته بندی‌ که در آن خرید می‌کنند، به مساله آلودگی سمی ربط می‌دهند، باید دانست که اکثر مواد شیمیایی که در تولید و ساخت پلاستیکها مورد استفاده قرار می‌گیرند، بسیار سمی هستند. برحسب درجه بندیEPA باید دانست که از 20 ماده شیمیایی که تهیه آنها موجب تولید بیشترین مقدار کل مواد زاید خطرناک می‌شود، پنج ماده شیمیایی از شش مورد اولی ، موادی هستند که بطور مستمر در صنایع پلاستیک‌سازی مورد استفاده قرار می‌گیرند.

mahdi1 بازدید : 11 شنبه 06 اردیبهشت 1393 نظرات (0)

 

مهدی هادی پور/مدرسه شهیدنصیری/کلاس05

 

 

 

دید کلی

با توجه به اینکه اشعه گاما دارای تشعشع الکترومغناطیسی می‌باشد، آن فاقد بار و جرم سکون است. اشعه گاما موجب برهمکنشهای کولنی نمی‌گردد و لذا آنها برخلاف ذرات باردار بطور پیوسته انرژی از دست نمی‌دهند. معمولا اشعه گاما تنها یک یا چند برهمکنش اتفاقی با الکترونها یا هسته‌های اتم‌های ماده جذب کننده احساس می‌کند. در این برهمکنش‌ها اشعه گاما یا بطور کامل ناپدید می گردد یا انرژی آن بطور قابل ملاحظه‌ای تغییر می‌یابد. اشعه گاما دارای بردهای مجزا نیست، به جای آن ، شدت یک باری که اشعه گاما بطور پیوسته با عبور آن از میان ماده مطابق قانون نمایی جذب کاهش می‌یابد. 

فروپاشی گاما

در فروپاشی گاما ، هنگامی که یک هسته تحت گذارهایی از حالات برانگیخته بالاتر به حالات برانگیخته پایین‌تر یا حالت پایه آن می‌رود، تشعشع الکترومغناطیسی منتشر می‌گردد. معادله عمومی فروپاشی گاما بصورت زیر است: 

AZX*-------->AZX + γ


که در آنX و X* به ترتیب نشان دهنده حالت پایه (غیر برانگیخته) و حالت با انرژی بالاتر است. قابل ذکر است که این فروپاشی با هیچ گونه تغییر در عدد جرمی(A) و عدد اتمی (Z) همراه نیست. 

حالت برانگیخته هسته و حالت با انرژی پایین حاصل شده در اثر نشر پرتو گاما ، فقط زمانی به عنوان ایزومر هسته‌ای در نظر گرفته می‌شود که نیمه عمر حالت برانگیخته به اندازه‌ای طولانی باشد که بتوان آن را به سادگی اندازه گیری نمود. زمانی که این حالت وجود داشته باشد، فروپاشی گاما به عنوان یک گذار ایزومری توصیف می‌گردد. اصطلاحات حالت نیمه پایدار یا حالت برانگیخته برای توصیف گونه‌ها در حالات انرژی بالاتر از حالت پایه نیز به کار می‌رود. 

حالتهای فروپاشی گاما

تعداد صفحات : 51

درباره ما
Profile Pic
داریوش سلامی ..................................................................................... کارشناسی ارشد شیمی فیزیک................................................................... دبیرشیمی ناحیه1رشت .......................................................................... .shimisalami@yahoo.com ................................................................ شیمی یکی از مهمترین علوم پایه است که نقش کلیدی در زندگی بشر امروزی دارد و هر جنبه از زندگی ما ارتباط نزدیکی با این علم دارد.
اطلاعات کاربری
  • فراموشی رمز عبور؟
  • نظرسنجی
    به سایت نمره بدهید.
    پیوندهای روزانه
    صفحات جداگانه
    آمار سایت
  • کل مطالب : 1015
  • کل نظرات : 183
  • افراد آنلاین : 3
  • تعداد اعضا : 461
  • آی پی امروز : 127
  • آی پی دیروز : 130
  • بازدید امروز : 195
  • باردید دیروز : 348
  • گوگل امروز : 12
  • گوگل دیروز : 13
  • بازدید هفته : 2,225
  • بازدید ماه : 1,168
  • بازدید سال : 48,579
  • بازدید کلی : 1,541,207
  • کدهای اختصاصی