loading...
شیــمـی سـلــامـــی/ شیمی دبیرستان
آخرین ارسال های انجمن
arshya بازدید : 937 دوشنبه 18 آذر 1392 نظرات (1)

محمد معتدل

کلاس01

فهرستی از ۲۰ حلال مختلف ، کاربرد و اثرات آن

 

 

حلال جزء مهمی از محلول است.  
  
حلال جزء مهمی از محلول است. حلال ها مواد شیمیایی هستند که مواد دیگر را در خود حل می کنند. حلال ها به طور کلی به دو دسته حلال های قطبی و حلال های غیر قطبی تقسیم می شوند. در حلال قطبی، ذرات تشکیل دهنده حلال قطبی بوده و یکدیگر را با نیروی جاذبه ی الکتروستاتیکی جذب می نمایند.

مهمترین حلال قطبی آب می باشد. انواع اسیدها مانند سولفوریک اسید H۲SO۴ و هیدروزن فلوئورید HF ، نیز در این دسته قرار می گیرند.

arshya بازدید : 736 دوشنبه 18 آذر 1392 نظرات (0)

محمد معتدل

کلاس01

تعیین مقدار اکسیژن محلول (DO)

 

 

تمام موجودات زنده برای انجام متابولیسم و تهیه انرژی جهت رشد و تولید مثل نیاز به اکسیژن به فرمهای مختلف دارند.  
  
مقدمه:

تمام موجودات زنده برای انجام متابولیسم و تهیه انرژی جهت رشد و تولید مثل نیاز به اکسیژن به فرمهای مختلف دارند. واکنشهای هوازی دارای اهمیت خاصی بوده زیرا به اکسیژن آزاد نیاز دارند. تمام گازخای موجود در هوا به مقدارهای مختلف در آب محلولند. نیتروژن و اکسیژن بعلت حلالیت کم در آب مورد توجه می‌باشند. زیرا با آب فعل و انفعال شیمیائی انجام نداده و حلالیت آنها مستقیماً به فشار جزئی آنها بستگی دارد. حلالیت اکسیژن دردرجه حرارتهای مختلف آب متفاوت است. مقدار حلالیت اکسیژن اتمفسر در آب نسبتاً خالص از ۶/۱۴ میلیگرم در لیتر در صفر درجه سانتیگراد تا ۷ میلیگرم در لیتر در ۳۵ درجه سانتیگراد تحت فشار ۱ اتمسفر متفاوت است. اکسیژن به مقدار کم در آب محلول بوده و حلالیت آن با فشار اتمسفر و درجه حرارت متغیر است. کمبود حلالیت اکسیژن در آب یکی از فاکتورهای اصلی است که ظرفیت تصفیه طبیعی آب را کاهش می‌دهد. لذا تصفیه فاضلابها قبل از ورود به رودخانه‌ها ضروری می‌گردد. اکسیژن محلول رودخانه‌ها نیز می‌توان آلودگی آنها را کنترل نمود. اکسیژن فاکتور مهمی در ایجاد خورندگی آهن و فولاد بخصوص در سیستمهای توزیع آب و بویلرها می‌باشد. لذا تعیین مقدار اکسیژن محلول برای کنترل خورندگی آب به کار می‌رود.

arshya بازدید : 434 دوشنبه 18 آذر 1392 نظرات (0)

محمد معتدل

کلاس01

بررسی اجمالی پیگمانها ـ رزینها ـ بایندرها و کاتالیستها در صنایع رنگ سازی

 

 

 رنگ، در دنیای امروز نقش بسیار مهمی را در پرورش ذوق و قرایح بشری و ارضای نیازهای زیباشناسی وی ایفا می کند. بدین جهت است که احساس رنگ را به تعبیری حس هفتم می گویند.  
  
مقدمه :

رنگ، در دنیای امروز نقش بسیار مهمی را در پرورش ذوق و قرایح بشری و ارضای نیازهای زیباشناسی وی ایفا می کند. بدین جهت است که احساس رنگ را به تعبیری حس هفتم می گویند. رنگ با حفظ اهمیت ویژه و بی چون و چرای خود در مبانی زیبائیهای هنر قدمی در روزگار ما عامل پرتوانی در آراستن و جلوه گری همه آثار زندگی و زیبا گردانیدن و مطلوب نمودن کالاها و وسائلی است که بدست توانای انسان تولید میگردد. انسان در پهنه تولید، تزئین خانه ها، پوشاک و حتی نوشابه ها، آذین بندی مجالس جشن و سرور، در هنر نقاشی، صنایع کشتیرانی، امور ارتباطات، محصولات مصرفی، در صنایع فضائی و خلاصه در همه شئونات زندگی با رنگ سر و کار دارد.

بطور کلی از رنگ علاوه بر ایجاد زیبائی محیط، جهت حفاظت اشیاء در مقابل عوامل طبیعی و سببی از قبیل ضربه، خراش، سائیدگی، مواد شیمیائی، حلالها، آب و هوای جوی و غیره استفاده میگردد و بندرت دیده شده است که سطح یک جسم مورد دید را فقط با رنگ حفاظتی بپوشانند و از رنگ رویه تزئینی استفاده ننمایند.

صنعت رنگسازی قدمت طولانی دارد اوایل رنگ را بطریق ابتدائی از روغنهای گیاهی با استفاده از آسیابهای سنگی و دستی جهت نرم کردن رنگدانه ها تولید میکردند. اما امروزه با پیشرفت صنعت و تکنولوژی، صنعت رنگسازی پیشرفت شایانی نموده بطوریکه توانسته در میدان علم و صنعت جائی پرنفوذ برای خود باز نماید وبه جرات می توان گفت که یکی از ارکان مهم هر یک از تولیدات صنایع گوناگونی که به مصارف عمومی و یا خصوصی می رسند، می باشد.

بعضی از رنگها مثل آستریها بعلت داشتن مقدار زیادی پیگمان مات بوده که به منظور حفاظت از سطوح بکار میروند و برخی دیگر نیمه شفاف و شفاف می باشند که از آنان بر روی آستریها به هر دو منظور حفاظتی و تزئینی استفاده می گردد.

arshya بازدید : 497 دوشنبه 18 آذر 1392 نظرات (0)

رضا دلخوش

کلاس01

کمیکار - ماشینهای شیمیایی

 

تمام واکنشهای شیمیایی ، اساسا ماهیت الکتریکی دارند، زیرا الکترونها ، در تمام انواع پیوندهای شیمیایی (به راههای گوناگون) دخالت دارند اما الکتروشیمی بیش از هر چیز بررسی پدیده‌های اکسایش- کاهش است.  
  

arshya بازدید : 352 دوشنبه 18 آذر 1392 نظرات (0)

رضا دلخوش

کلاس01

کربوهیدراتها

کربوهیدراتها ، منبع مهم غذایی‌اند. کربوهیدراتها همچنین به عنوان واحدهای سازنده چربیها و نوکلئیک اسیدها عمل می‌کنند. 
   

arshya بازدید : 425 دوشنبه 18 آذر 1392 نظرات (0)

ضیا محبی

کلاس 05

 

تجزیه عنصری

در شناسایی ترکیبات آلی شیمیدان کمتر به یک جسم خالص برخورد می کند بلکه اکثرا جسم با محصولات فرعی و مواد اولیه مخلوط است.گرچه با وجود روش های جدید تفکیک بخصوص روشهای کروماتوگرافی جدا کردن ترکیب خالص از گذشته آسانتر است با این حال نباید اهمیت روشهای کلاسیک را نادیده گرفت.  
 
  
  
مقدمه

 

تفکیک مخلوط تر کیبات آلی:

 


 

در شناسایی ترکیبات آلی شیمیدان کمتر به یک جسم خالص برخورد می کند بلکه اکثرا جسم با محصولات فرعی و مواد اولیه مخلوط است.گرچه با وجود روش های جدید تفکیک بخصوص روشهای کروماتوگرافی جدا کردن ترکیب خالص از گذشته آسانتر است با این حال نباید اهمیت روشهای کلاسیک را نادیده گرفت.

 

 


اساس کلی روشهای که اغلب برای جدا کردن مخلوط های آلی به کارمی رود استفاده از قطبیتی است که در اجزای یک مخلوط وجود دارد یا در آن ایجاد می شود.این اختلاف تقریبا در تمام روشهای تفکیک از جمله تقطیر -تبلور مجدد-استخراج و کروماتوگرافی به کار می آید.بزرگترین قطبیتی که تفکیک را ساده تر می کند اختلافی است که در قطیبت نمکها و مواد آلی غیر قطبی وجود دارد.هر گاه یک یا چند جزاز یک مخلوط قابل تفکیک به نمکهای مربوط باشند به سهولت می توان آن اجزا را به کمک استخراج یا تقطیر به طور کامل از اجزای غیر قطبی جدا کرد.

 

 

تجزیه کیفی آلی به روش کلاسیک:

 

 

این تجزیه شامل ۶ مرحله ی اساسی است که در زیر آرده شده است:

 

 

۱) آزمایش مقدماتی خواص فیزیکی و شیمیایی

 

 

۲) اندازه گیری ثابت های فیزیکی

 

 

۳) تجزیه عنصری

 

 

۴) آزمایشهای مربوط به حلالیت

 

 


۵) آزمایشهای مربوط به گروه بندی(فعالیت عوامل مختلف غیر از واکنشهای اسیدو باز)

 

 

۶) تهیه مشتق ها

 

 


این روش بسیار با ارزش است.با این روش معمولا می توان یک ترکیب آلی شناخته شده را نسبت به یک ترکیب معدنی با اطمینان بیشتری تشخیص داد.

 

 


در ادامه به شرح مورد سوم(تجزیه عنصری) می پردازیم.

 

 

 

تجزیه عنصری

 

 


عناصر متداول موجوددرترکیبات آلی کر بن هیدروژن واکسیژن می باشد گاهی عناصر دیگری نظیر نیتروژن- گوگرد-اکسیژن و هالوژن هاهم درآنها یافت می شوند .

 

 


برای اکسیژن آزمایش ساده ای وجود نداردو عناصر دیگر با پیوند کوالانسی در اتصال هستندو بنابراین با آزمایش های یونی معمولی مستقیما جواب نمی دهند.ولی اگر جسم آلی مجهول با سدیم مذاب ذوب شود در اگثر موارد طوری ترکیب می شود که
NوSوXآن به یونهای CNوSوCNSوXتبدیل می شود.پس از آنکه سدیم اضافی دقیقا از بین برده شد محلول آبی را که محتوی این یونهاست به روش معمولی معدنی تجزیه می کنند.توضیح کامل تری در این مورد وجود دارد که در زیر به آن می پردازیم.

 

 

 

کربن هیدروژن واکسیژن

 

 


برای اثبات وجود کربن و هیدروژن نمونه رابا پودر خشک مس(
II) اکسید حرارت داده که منجر به ایجاد کربن دی اکسید وآب می شود . حضور کربن در نمونه با عبور دادن گاز های ایجاد شده از درون محلول با ریم یا کلسیم هیدروکسید مشخص نمی شود که دراین صورت رسوب کربنات مربوطه حاصل می شود . هیدروژن را می توان با ایجاد قطره های آب متراکم شده روی قسمت بالایی لوله تشخیص داد . هیچ آزمایش کیفی برای اثبات وجود اکسیژن در ترکیبات آلی وجود ندارد برای تعیین اکسیژن باید تجزیه کمی صورت بگیرد .دراین روش اگر اگر مجموع درصد تمام عناصر تشکیل دهنده ترکیب کمتر آن تا ۱۰۰ مربوط به در صداکسیژن است .

 

 

 

نیتروژن گوگرد و هالوژن ها

 

 


تشخیص کیفی این عناصر در ترکیبات آلی مشکل تراز آنها در ترکیبات معدنی است . زیرا اکثر ترکیبات آلی در حالت محلول درآب به مقدار قابل ملاحظه ای یونیزه نمی گردند.از آنجا که آزمایشهای تجزیه کیفی براساس واکنش های یونی می باشند انها را نمی توان مستقیما برای ترکیبات آلی به کار گرفت.به عنوان مثال سدیم کلرید یا سدیم برمید با محلول آبی نقره نیترات به مقدار قابل توجهی رسوب هالید های نقره را ایجاد می نمایند در حالیکه کربن تترا کلرید -برومو بنزن و اغلب هالیدهای آلی در هنگام واکنش با محلول آبی نقره نیرات رسوب هالید نقره را ایجاد نمی نمایند زیرا در آنها به میزان یون هالید در محلول تولید نمی شود.

 

 


در این حالت برای تشخیص کیفی لازم است که ابتدا عناصر نیتروژن-گوگرد-و هالوژن ها را به ترکیبات یونیزه شونده تبدیل نمود.یکی از متداول ترین این روش هاجهت انجام این تبدیل ذوب کردن نمونه با فلز سدیم است که با انجام آن عناصر ذکر شده به ترکیبات سدیم سیانید-سدیم سولفیدو سدیم هالید تبدیل می شوند.سپس آنیون های حاصل را می توان توسط آزمایش های معمول معدنی شناسایی نمود.واکنش ذوب با سدیم به صورت زیر می باشد:

 

 


در مواردی که سدیم به مقدار کافی به کار برده نشود و ماده مورد نظر دارای گوگرد ونیتروژن (هردو)باشد گاهی تفکیک به خوبی صورت نمی گیرد واین دو عنصر به صورت ترکیب
NaSCN ظاهر می گردند.برای شناسایی این ترکیب از کلرو فرمیک۱۰درصد استفاده می شود.

 

 

 

تجزیه کیفی مواد آلی به روش ذوب قلیایی جهت تشخیص نیتروژن، گوگرد و هالوژنها

 

 

برای تشخیص این عناصر در ترکیبات آلی ابتدا باید آنها را به ترکیبات معدنی یونیزه تبدیل کرد سپس شناسایی نمود. این تبدیل ممکن است به روشهای مختلف صورت گیرد ولی بهترین روش ذوب ترکیبات با فلز سدیم است. در این روش سیانید سدیم (NaCN)، سولفید سدیم (Na۲S) و هالید سدیم (NaX) تشکیل میشود که به آسانی قابل تشخیص هستند.

 

 

معمولا سدیم به مقدار اضافی به کار برده میشود. در غیر اینصورت اگر گوگرد و نیتروژن هردو وجود داشته باشند. احتمالا تیوسیانات سدیم (NaSCN) تشکیل میشود. در این صورت در تشخیص نیتروژن به جای آبی پروس رنگ قرمز مشاهده میشود زیرا بجای یون (CN-)، یون (SCN-) خواهیم داشت. اما با سدیم اضافی تیوسیانات تشکیل شده تجزیه میشود و جواب درست به دست می آید.

 

 


مخلوط حاصل آب اضافه کرده مخلوط قلیایی را صاف نموده و سپس به آن (
FeSO۴) اضافه کنید در این صورت فروسیانید سدیم تشکیل میشود.

 

 


وقتی محلولهای قلیایی نمکهای فروی بالا جوشانده میشود بر اثر اکسیژن هوا کمی یون فریک تشکیل میشود. (بر اثر سولفوریک اسید رقیق هیدروکسیدهای فرو و فریک تشکیل شده حل میشوند) فروسیانیدها با نمک فریک تشکیل فروسیانید فریک (آبی پروس) میدهند.

 

 

برای اسیدی کردن محیط نباید از (HCl) استفاده کرد زیرا به علت تشکیل (FeCl۶) رنگ زرد در محیط ایجاد میشود و به جای آبی پروس رنگ سبز ظاهر میشود. به همین دلیل کلرید فریک نیز نباید اضافه شود. همانطوری که قبلا ذکر شده است بر اثر اکسیداسیون به وسیله هوا در محیطهای قلیایی گرم به مقدار کافی یونهای فریک تشکیل میشود بنابراین نیازی به افزایش یون فریک نیست، افزایش مقدار کمی محلول رقیق فلوئورید پتاسیم ممکن است به تشکیل آبی پروس در محلول که به آسانی قابل صاف شدن است کمک نماید (Fe۳+ با F- تولید FeF۶۳- میکند که پایدار است و باعث خارج شدن Fe۳+ از محیط عمل میشود).

 

 

گوگرد به صورت یون سولفید را میتوان به وسیله استات سرب و استیک اسید و یا به وسیله پلمبیت سدیم (محلول قلیایی استات سرب) به صورت رسوب سولفید سرب (PbS) سیاه رنگ تشخیص داد.

 

 


برای تشخیص یونهای هالوژن (
Cl, Br, I) از اثر محلول نیترات نقره در محیط اسید نیتریکی استفاده میشود در این صورت هالید نقره به صورت رسوب حاصل میشود.

 

 

 

بخش عملی (ذوب قلیایی)

 

 

احتیاط: (به هنگام کار عینک محافظ فراموش نشود) در یک لوله آزمایش کاملا خشک (حدود ۱۵۰ در ۱۲ میلیمتر غیر پیرکس) یک تکه سدیم کوچک تمیز به ابعاد تقریبی ۴ میلیمتر بیندازید (سدیم را به وسیله کاردک تمیز و خشک بردارید) و لوله را با گیره بگیرید و ته لوله را با شعله کوتاه به ملایمت حرارت دهید تا سدیم در داخل لوله ذوب شده و به صورت دود سفید در آید و بخارات تا ارتفاع حدود ۲ سانتی متر بالا رود، سپس لوله را از شعله دور کرده و به آن چند ذره جسم جامد (حدود ۲۰ میلی گرم) یا حدود سه قطره مایع مورد آزمایش (ترجیحا طی چند نوبت) طوری اضافه کنید که مستقیما در ته لوله و بر روی دود سفید سدیم ریخته شود (دقت کنید ممکن است انفجار کوچکی رخ دهد بنابر این این آزمایش را حتما زیر هود و تحت نظر مربی آزمایشگاه انجام دهید) و بعد بتدریج لوله را تا سرخ شدن گرم کنید (احتیاط: موقع حرارت دادن، دهانه لوله را به طرف خود یا فرد دیگری نگیرید) سپس لوله داغ را داخل یک بشر کوچک حاوی ۱۰ میلی لیتر آب مقطر وارد کنید تا بشکند. مخلوط را تا جوش حرارت داده و سپس صاف کنید محلول صاف شده باید زلال و قلیایی باشد. در صورتیکه تیره باشد، احتمالا تجزیه ناقص بوده و ذوب قلیایی باید دوباره تکرار شود.

 

 

روش دیگر استفاده از لوله آزمایش پیرکس است. در این روش مطابق بالا عمل کنید اما پس از ذوب قلیایی اجازه دهید لوله سرد شود و سپس ۳ الی ۴ میلی لیتر متانول به آن اضافه کنید تا سدیم اضافی را تجزیه کند سپس بر روی آن آب مقطر بریزید تا نصف لوله پر شود و برای چند دقیقه به ملایمت بجوشانید. سپس مخلوط را صاف نموده و بر روی محلول آزمایشات زیر را انجام دهید.

 

 


شناسایی نیتروژن

 

 

حدود ۱ میلی لیتر محلول صاف شده را در یک لوله آزمایش ریخته و به آن کمی سولفات فرو اضافه کنید و محلول را به آرامی و همراه با تکان دادن تا نقطه جوش حرارت دهید و سپس بدون سرد نمودن محلول را با اسید سولفوریک رقیق اسیدی کنید(PH=۱۳) رسوب یا رنگ آبی پروس دلیل بر وجود نیتروژن است. افزودن ۱ میلی لیتر محلول ۵% فلوئورید پتاسیم برای تشکیل آبی پروس مفید است.

 

 


شناسایی گوگرد

 

 

الف) استفاده از استات سرب: در حدود ۱ میلی لیتر محلول زیر صافی را در یک لوله آزمایش ریخته و با استیک اسید اسیدی کنید. حال به محلول حاصل چند قطره استات سرب اضافه کنید. ایجاد رسوب سیاه رنگ سولفید سرب دلیل بر وجود گوگرد در ماده آلی است.

 

 

ب) استفاده از پلمبیت سدیم: ابتدا محلول پلمبیت سدیم را به این صورت تهیه کنید. به چند قطره محلول استات یا نیترات سرب قطره قطره محلول سود ۱۰% اضافه کنید تا ابتدا رسوب سفید تشکیل شده سپس در زیادی سود حل شود و محلول زلالی به دست آید. در حدود ۱ میلی لیتر محلول زیر صافی را در یک لوله آزمایش ریخته و حدود یک میلی لیتر محلول پلمبیت سدیم به آن اضافه کنید. تشکیل رسوب سیاه رنگ PbS نشانه وجود گوگرد در جسم مورد آزمایش است.

 

 


شناسایی هالوژنها

 


آزمایش نیترات نقره

 


اگر در ساختمان ماده آلی نیتروژن یا گوگرد حضور داشته باشد با افزایش نیترات نقره به محلول اسیدی تهیه شده از ذوب قلیایی علاوه بر هالید نقره، رسوب سفید
AgCN یا رسوب Ag۲S نیز تشکیل میشود که مزاحم عمل تشخیص هالوژنها هستند بنابراین قبل از رسوب دادن AgX باید گوگرد و نیتروژن را از محیط عمل خارج سازید، بدین طریق که به آن اسید نیتریک غلیظ افزوده و محلول حاصل را بجوشانید تا بر اثر تبخیر حجم آن به نصف تقلیل داده شود، سپس آنرا سرد کرده و با حجم مساوی آب مقطر رقیق کنید. سپس بر روی آن آزمایشات زیر را انجام دهید، اگر گوگرد و ازت وجود نداشته باشد نیازی به عمل فوق نیست.

 

 

الف) اگر در جسم آلی یک نوع هالوژن وجود داشته باشد حدود ۲ میلی لیتر از محلول زیر صافی را در یک لوله آزمایش بریزید و با اسید نیتریک رقیق آنرا اسیدی کرده مقداری محلول نیترات نقره اضافه کنید، رسوب تشکیل شده مشخص کننده نوع هالوژن خواهد بود، مایع رویی را بر اثر سرازیر کردن جدا کنید و به رسوب محلول رقیق آمونیاک اضافه نمائید اگر رسوب سفید بوده و به خوبی محلول در آمونیاک رقیق باشد نشانه کلر، و اگر زرد کمرنگ و به سختی محلول در آمونیاک باشد (کم محلول باشد) نشانه برم، اگر زرد پر رنگ و تقریبا نا محلول در آمونیاک باشد نشانه وجود ید در جسم آلی است.

 


ب) اگر مخلوط چند هالوژن وجود داشته باشد:

 


شناسایی ید

 

 

۲ میلی لیتر از محلول زیر صافی را در یک لوله آزماش بریزید و با مقداری استیک اسید خالص (گلاسیال)، آنرا اسیدی کنید و سپس به آن حدود یک میلی لیتر تتراکلرید کربن بیفزائید و قطره قطره محلول نیتریت سدیم ضمن تکان دادن شدید لوله آزمایش اضافه کنید رنگ بنفش یا ارغوانی که در لایه آلی (CCl۴) تشکیل میشود نشانه حضور ید است.

 

 

پس از تشخیص ید از محلول همین لوله آزمایش برای تشخیص برم استفاده کنید. بدین طریق که مجددا مقداری محلول نیتریت سدیم افزوده و مقدار جزئی گرم کنید. بعد شدیدا تکان دهید و صبر کنید تا دو لایه از هم جدا شوند، لایه رویی را در لوله آزمایش تمیز دیگری بریزید و لایه بنفش رنگ تتراکلرید کربن را دور بریزید. به لایه رویی که در لوله آزمایش تمیز ریخته بودید یک میلی لیتر تترا کلرید کربن اضافه کنید و قطره قطره محلول ۲۰% نیتریت سدیم بیفزائید و در ضمن افزایش لوله را تکان دهید اگر باز هم لایه زیری رنگی شد محلول سدیم نیتریت بیشتری ریخته و پس از تکان دادن و سپس جدا شدن دو لایه لایه رویی را به لوله آزمایش دیگری منتقل کنید و لایه زیری را دور بریزید و بر روی لایه رویی این عمل را آنقدر تکرار کنید تا دیگر لایه رنگی ایجاد نشود، در این صورت دیگر در محلول شما ید وجود ندارد. حال بر روی این محلول آزمایش تشخیص برم انجام دهید. (توجه کنید که اگر در ابتدای آزمایش رنگ بنفش ظاهر نشود نشانه عدم حضور ید در محلول است و بنابر این نیازی به استخراج ید نیست و از همان ابتدا میتوان برای تشخیص برم عمل کرد).


 

arshya بازدید : 347 دوشنبه 18 آذر 1392 نظرات (0)

ضیا محبی

کلاس 05

فرآیندهای ترمودینامیک

 

 یک حالت تعادل با مقادیر پارامترهای ماکروسکوپیک T ، V ، P مشخص می شود. مقادیر ماکروسکوپیک و روشهای اندازه گیری P و V نیاز به توضیحات اضافی ندارند. 
 
  
  
مقدمه

 


یک حالت تعادل با مقادیر پارامترهای ماکروسکوپیک
T ، V ، P مشخص می شود. مقادیر ماکروسکوپیک و روشهای اندازه گیری P و V نیاز به توضیحات اضافی ندارند.


 

یک گاز ایده آل می تواند به صورت گازی که از قانون بویل _ ماریوت بر طبق قاعده زیر تبعیت می کند، تعریف شود:

 

 

برای یک گاز با جرم ثابت ، فشار حاصل شده توسط حجم فقط بستگی به درجه حرارت دارد. می دانیم که درجه حرارت ثابت همان دمای ثابت است. بنابراین منظور ما با بیان درستی قانون بویل _ ماریوت برای تمامی دماهای ممکنه ، کاملا واضح است. در حالیکه خود دما هنوز تعیین نشده است. در نتیجه ما می توانیم قبل از تعریف نحوه اندازه گیری درجه حرارت ، ایده آل بودن یک گاز را بررسی کنیم.

 

 

اگر ایده آل بودن گاز مشخص شود، ما می توانیم بستگی دمایی ،PV را از فرمول مسلم فرض کنیم. بعد از این ، گاز ایده آل به عنوان جسم دماسنجی بکار برده می شود، در حالیکه درجه حرارت بر طبق رابطه قبل با در نظر گرفتن P به عنوان ویژگی دماسنجی مشخص می شود. این ویژگی که به این صورت تعریف می شود، درجه حرارت نامیده می شود و در ادامه به عنوان T معین می شود.


 

بنابراین می توان فرض کرد که سومین پارامتر ماکروسکوپیک T که یک حالت تعادل سیستم را مشخص می کند، تعریف شده است. ما یک فرآیند را تحول یا انتقال از یک حالت تعادل به حالت تعادل دیگر می نامیم. یعنی انتقال از برخی مقادیر ، ، مربوط به پارامترها ، به مقادیر دیگر ، ، . در این تعریف ضروری است که حالتهای اولیه و نهایی ، حالتهای تعادل باشند.

 

 

انواع فرآیندها

 


۱) فرآیند ناترازمندی یا عدم تعادل

 


۲) فرآیند تعادلی

 


۳) فرآیند برگشت پذیر

 


۴) فرآیند برگشت ناپذیر

 


الف) فرآیندهای ناترازمندی یا عدم تعادل

 


فرض کنید برای مثال باید به یک حالتی با حجم متفاوت برسیم. واضح است که اگر تحول به آرامی انجام نشود، فشار به همراه دما برای مدت زیادی در این حجم ثابت نخواهد ماند. در حالت کلی ، صحبت درباره هر فشار و دمای معینی بی معنی خواهد بود، چون آنها در نقاط مختلف ، متفاوت خواهد بود. به علاوه ، توزیع فشار و دما در یک حجم فقط به حالتهایی اولیه و نهایی بستگی ندارد، بلکه به نحوه انجام این تحول نیز وابسته است. بنابراین حالتهای میانی در یک چنین فرایندی ، ناترازمند هستند. این فرآیند ، فرآیند ناترازمندی (فرآیند عدم تعادل) نامیده می شود.

 


ب) فرآیند تعادلی

 

 

یک تحول می تواند به طرق مختلفی تکامل یابد. یعنی بی نهایت آرام صورت گیرد. بعد از یک تغییر بسیار کوچک در پارامترها ، تغییر بعدی تا رسیدن سیستم به حالت تعادل صورت نمی گیرد، یعنی تمام پارامترها در سراسر سیستم ، با مقادیر ثابت فرض می شوند. بعد از آن مرحله بعدی صورت می گیرد و به همین ترتیب ادامه می یابد. بنابراین ، تمامی فرآیند شامل حالتهای تعادلی متوالی است. چنین فرایندی، فرآیند تعادلی نامیده می شود. در معادله حالت یک گاز ایده آل ، ، دو تا از پارامترها (هر کدام) می توانند به عنوان پارامترهای مستقل در نظر گرفته شوند و مشخص کننده فرآیند باشند. یک نمونه از این فرآیند در انتقال از حالت و به حالت و در نظر گرفته می شود. در هر نقطه از این فرآیند ، دما منحصرا از معادله حالت بدست می آید.

 


ج) فرآیندهای برگشت پذیر و برگشت ناپذیر

 


فرآیندی که در تحول برگشت از حالت نهایی به حالت اولیه توسط حالت میانی ، نظیر فرآیند جلو برنده ، انجام گیرد، فرآیند بازگشت پذیر نامیده می شود.

 


اگر فرآیند برگشت ، بوسیله همان حالت میانی غیر ممکن باشد، فرآیند بازگشت ناپذیر است.

 


واضح است که یک فرایند غیر تعادلی (ناتراز مندی) در حالت کلی نمی تواند برگشت پذیر باشد. از طرف دیگر ، یک فرآیند تعادلی همواره برگشت پذیر است. البته این به آن معنا نیست که مفهوم فرآیند برگشت پذیر ، معادل یک فرآیند بسیار آرام (کند) باشد. برخی فرآیندهای بی نهایت آرام غیر قابل برگشت (برگشت ناپذیر) هستند. برای مثال تغییر شکل مومسان (پلاستیکی) جامدات ممکن است به صورت بی نهایت آرام صورت گیرد، ولی با وجود این یک فرآیند برگشت ناپذیر است.

 

 

بنابراین از این پس فقط فرآیندهای برگشت پذیر را در نظر خواهیم گرفت. به مثالی در مورد انبساط همدما (تک دما) در یک گاز توجه کنید. گازی با حجم اولیه در ظرفی که با پیستونی مسدود شده است، قرار دارد. برای کنترل فشار پیستون روی آن دانه های شن و ماسه ریخته شده است. بعد از اینکه حجم گاز از به V افزایش یافت. انتقال بعدی دانه های شن و ماسه از روی پیستون متوقف می شود. گاز مراحل متوالی را طی کرده است که در هر کدام از مراحل مقادیر حجم و فشار معین بود، در حالی که درجه حرارت ثابت می ماند. کار انجام گرفته توسط گاز برابر بیرون راندن هوای اتمسفری از حجمی است که اکنون توسط گاز در داخل سیلندر اشغال شده است و پیستون به همراه شن تا ارتفاع مشخصی بالا برده شده است. دانه های شن که به منظور بالا بردن پیستون تا ارتفاعهای مختلف در آنجا قرار داده شده اند، برداشته می شوند.

 

 

حال بیایید به تدریج پیستون را با دانه های شن پر کنیم که قبلا به منظور بالا بردن پیستون برداشته شده بودند و آن را به ارتفاع اولیه برسانیم. این دانه های شن ، جرم پیستون را افزایش می دهند. در نتیجه ، فشار گاز افزایش می یابد و با شروع فشرده شدن ، حجم آن کاهش می یابد. کل فرآیند در جهت معکوس انجام می گیرد و دما به علت مبادله گرما با محیط پیرامون در یک مقدار ثابت باقی می ماند. فشار گاز مربوط به هر کدام از وضعیتهای سیلندر نظیر فرآیند انبساط گاز است. در نتیجه ، با کاهش حجم ، گاز موجود در سیلندر تمامی حالتهای فرآیند انبساط را طی می کند. ولی این بار نظم (ترتیب) در جهت عکس است.

 

 

وقتی که گاز تا حجم فشرده می شود، پیستون همه دانه های شن را که قبلا برداشته شده بود، حمل می کند. حال جرم پیستون به همراه شن برابر است. بنابراین کل سیستم به حالت اولیه برگشته است. انبساط و فشرده شدن (انقباض) گاز به صورت معکوش صورت می گیرد.

 

 

همچنین گاز می تواند به صورت بازگشت ناپذیر انبساط یابد، برای مثال با برداشتن سریع تمامی دانه های شن از روی پیستون ، وقتی که پیستون در پایین ترین موقعیت است. در این صورت جرم پیستون بدون شن به اندازه کافی سبک خواهد بود. تحت این شرایط ، پیستون با شتاب زیادی به سمت بالا حرکت خواهد کرد و در نتیجه حجم گاز افزایش خواهد یافت. در این حالت درجه حرارت تغییر می کند و در قسمتهای مختلف حجم سیلندر مقادیر متفاوتی را خواهد داشت و فقط حجم گاز مقدار معینی را دارا خواهد بود. حالت گاز موجود در سیلندر با هیچ یک از مقادیر P و V قابل توصیف نیست. بدین علت فرآیند نمی تواند با یک خط پیوسته نظیر فرآیندهای برگشت پذیر نمایش داده شود.

 

 

نکته ۱

 


تمامی حالتهای میانی در یک فرآیند تعادلی ، حالتهای متعادل هستند. در حالیکه حالتهای میانی در یک فرآیند ناترازمند ، شامل حالتهای ناترازمندی هستند.

 


فرآیندهای تعادلی برگشت پذیر هستند، در حالیکه فرآیندهای ناترازمندی ، برگشت ناپذیر هستند.

 

 

یک فرایند بی نهایت آرام (کند) لزوما یک فرآیند تعادلی و برگشت پذیر نیست.

 

نکته ۲

 

 

تغییر حالت در یک سیستم همواره با یک تحول به حالت غیر تعادلی یادآوری می شود. هر چه تغییر در سیستم سریع تر صورت گیرد، اهمیت انحراف از حالت غیر تعادلی بیشتر می شود. برای برگشت به حالت تعادل مقدار زمان زیادی لازم است. از این رو با تغییر حالت سیستم به صورت بسیار آرام ، ما سیستم را از حالت تعادل خارج نخواهیم کرد و از طرف دیگر ، با زمان دهی کافی به سیستم برای برگشت به حالت تعادل در هر مرحله میانی ، سیستم از حالت تعادل خارج نخواهد شد. در نتیجه سیستم حالتهای تعادلی متوالی را طی خواهد کرد.


 

تقریبی در نظر گرفتن این اظهارات و فرض کردن این که سیستم فقط یک رشته حالتهای نزدیک تعادلی و نه خود تعادلی را طی می کند، کاملا اشتباه است و در واقع خود حالت تعادل توسط افت و خیزهایی بوسیله حالتهای غیر تعادلی بدست می آید. بنابراین اگر حالتهای نزدیک تعادل با حالتهای تعادلی بوسیله مقدار کوچکی نسبت به حالتهای افت و خیز تفاوت داشته باشد، آنها به سادگی می توانند به عنوان حالتهای تعادلی در نظر گرفته شوند. این مطلب همواره می تواند حاصل شود، به شرطی که فرآیند به اندازه کافی آرام انجام گیرد.

 

arshya بازدید : 109 دوشنبه 18 آذر 1392 نظرات (0)

ضیا محبی

کلاس 05

عناصر کمیاب و منابع آنها در روی زمین

 

عناصر کمیاب زمین، عنصرهای ۵۸ تا ۷۱جدول تناوبی را تشکیل میدهند و جزو عناصر واسطه داخلی می باشند.  
 
   
 
   
عناصر کمیاب زمین، عنصرهای ۵۸ تا ۷۱جدول تناوبی را تشکیل میدهند و جزو عناصر واسطه داخلی می باشند. وجه تسمیه لانتانیدها از عنصر ۵۷ جدول یعنی لانتان(
La)گرفته شده است. باید توجه داشت که خواص شیمیایی این دسته از عناصر مشابه خواص لانتان می باشد. در واقع اطلاق نام عناصر نادر یا کمیاب، از آنجائیکه این عناصر نه کمیابند و نه به آن دسته از اکسیدهای خاکی مانند(اکسیدهای)آلومینیوم، زیرکونیوم و ایتریوم تعلق دارند، غلط مصطلح است. زمانی که نخستین اعضای این گروه برای اولین بار کشف شد، بصورت اکسید مجتمع گردیده بودند و از آنجایی که این اکسیدها تا اندازهای به اکسیدهای کلسیم، منیزیم و آلومینیوم که بعدها به آنها عنوان اکسیدهای خاکی اطلاق گردید شباهت دارند، لذا این عناصر به نام عناصر کمیاب معروف گردیدند. در هر صورت باید توجه داشت که سریوم در پوسته زمین بسیار فراوان تر از سرب بوده و نیز ایتریم از قلع بسیار فراوانتر است و حتی بایداذعان نمود که کمیاب ترین خاکهای کمیاب، به استثنای پرومتیم، بسیار از عناصر گروه پلاتین فراوانترند.

 

 

مهمترین کانی های عناصر کمیاب عبارتند ازمونازیت، زنوتیم، بستناسیت. معمولااین مواد بوسیله اعمال مکانیکی مانند شناورسازی و یا استفاده از روشهای مغناطیسی تغلیظ میشوند. سپس لانتانیدها در حالتیکه بصورت کانیهای فسفات یا سیلیکات می باشند، بوسیله اسید مورد شستشو قرار می گیرند. برخی از کانیها مانندکولومبوتانتالات ها با کربن حرارت داده شده و یا تحت تاثیر کاستیک قوی قبل از سنگ شویی قرار داده میشوند.

 

 

منابع عناصر کمیاب در روی زمین :

 

 

کربناتیت ها بیشتر با سنگهای آذرین آلکالن در ریفت های داخل قاره ای وبه ندرت جزایر اقیانوسی ونقاط داغ داخل قاره گزارش شده اند . کربناتیت ها از دوره پر کامبرین تا عهد حاضر گزارش شده اند.مواد معدنی مهمی از کربناتیت ها بدست می آیند عبارت اند از نیوبیوم، آهن، آپاتیت، عناصر کمیاب، ورمیکولیت، استرانسیوم، باریم، زیرکون، اورانیوم، فلوریت و تیتان.

 

 

کربناتیت های حاوی عناصر کمیاب از نوع آهن دار هستند.این کربناتیت ها به ندرت یافت می شوند. کربناتیت های آپاتیت-مگنتیت اکثرا دارای مقدار کمی عناصر کمیاب هستند. دو کمپلکس کربناتیت کولا(Kola)در روسیه و مانت پاس(Mountain pass)در کالیفرنیا(آمریکا)ذخایر قابل توجهی از عناصر کمیاب دارند.

 

 

کانیهای مهمی که در این ذخایر یافت می شوند عبارتند:

 


پیرو کلر (Ca.Na)۲(Nb.Ta)۲O۶(O.OH.F)

 


بادالیت ZrO۲

 

باستانسیت F.OH)(Ce.La)۲CO۳)

 


مونازیت CePO۴

 


پاریزیت Ca.La)۲(CO۳)۳F۲)

 

 

حدود ۱۳۰کانی مختلف تاکنون در کربناتیت ها تشخیص داده شده است.

 

 

عناصرکمیاب می تواند از سنگهای آذرین آلکالن حاصل شود(سمینوف وهمکاران ۱۹۷۲).عناصر کمیاب اکثرا در سنگهای آلکالن غنی از سدیم-پتاسیم اسیدی یافت می شود. نفلین سیانیت ها حاوی عناصر کمیاب می باشند.

 

 

پگماتیت هایی که در عمق۵/ ۳تا ۷ کیلومتری(عمق متوسط)از سطح زمین تشکیل شده اند به پگماتیت های حاوی عناصر کمیاب معروفند.بیشتر کانی های حاوی عناصر کمیاب به صورت پلاسر یافت می شوند.

 

 

کانی های زیر حاوی عناصر کمیاب می باشند :

 

 

مونازیت Ce,La,Nd,Th)PO۴)

 


زینوتیم YPO۴

 


آلانیت (Ce,Ca,Y)۲(Al+۳,Fe+۳)۳O(SiO۴)(Si۲O۷)(OH)

 


سریوپیرو کلر (Ce,Ca,Y)۲(Nb,Ta)۲O۶(OH,F)

 

 

ایتروپیرو کلر Y,Na,Ca,Y)۱-۲(Nb,Ta,Ti)۲(O.OH)۷)

 

 

لوپاریت Ca,Na,Ce)(Ti,Nb)O۸)

 


گادولینیت Gadolinite)۲BeO.FeO.Y۲O۳.۲SiO۲)

 


بستنا سیت Bastanasite)CeFCO۳)

 

 

سامارسکیت Samarskite)(Ca,Fe,UO۲)۳O.Y۲O۳.۳(Nb,Ta)۲O۵)

 

 

فرگوزنیت fergusonite)Y۲O۳.۳(Nb.Ta)۲O۵)

 

 

اگزنیت Euxenite)Y۲(NbO۳)۳.Y۲(TiO۳)۳.۱ ۱/۲H۲O)

 

 

ایتروفلوئوریت Yttrofluorite)۲YF۳۳CaF۳)


 

زینوتیم( YPO۴):

 

 

زینوتیم یکی از کانی های کمیاب ایتریوم می باشد . Wakefielditeو chernovite-(Y)دیگر کانی های ایتریوم هستند هرچند به ترتیب وانادات وارسنات می باشند. اغلب اوقات اورانیوم وبرخی از عناصر کمیاب مانند ایربیوم، تریوم، ایتریوم، زیرکونیوم در این کانی یافت می شود. زینوتیم به مقدار کم رادیواکتیویته می باشد

 

 

گادولینیت(Gadolinite):

 

 

فرمول شیمیایی ۲BeO.FeO.Y۲O۳.۲SiO۲

 

 

نام دیگر آن Yttrium Iron Beryllium Silicateاست. این کانی تاحدی کانی کمیاب است . شکل آن منشوری، مقطع عرضی بلورها به شکل الماس، ومعمولابه رنگ سبز وبادرخشندگی زیبا می باشد. این کانی حاوی دو عنصر ایتریوم(yttrium)وبریلیوم(beryllium)می باشد.اتریوم(yttrium)یک فلز کمیاب زمین است ودر صنعت مورد استفاده قرار می گیرد

 


سامارسکیت(Samarskite):

 

 

نام دقیق آن smarskite-yاست این کانی در گرانیت پگماتیت ها در سنگهای آذرین درونی که آرام سردشده اند یافت می شود.سامارسکیت همراه کوارتز، فلدسپات، کلومبیت، تانتالیت، وبرخی ازعناصر کمیاب می باشد. رنگ آن مشکی مخملی تا قهوه ای تیره است.وکریستال های آن مات و رادیواکتیویته می باشدواغلب با لیمونیت(Limonit)پوشیده شده است.درکوهای ارال در روسیه، نروژ،سوئد، برزیل، امریکا یافت می شود

 

 

ایتروفلوئوریت(Yttrofluorite):

 

 

این کانی حاوی فلرورید ومقدار قابل محسوس ایتریوم(Ytrium )می باشدویون های(Ca)در ساختار های فلورید جایگزین شده اند . این کانی در روسیه، امریکا، نروژ، ژاپن، مغولستان یافت می شود.

 

mehrab_nazari بازدید : 123 پنجشنبه 14 آذر 1392 نظرات (0)

 

استالاگميت

 

به صورت سنگال هايي(كنكرسيون) در زير استالاكتيت ها ايجاد مي شوند كه قاعده آنها در كف غار و راس آنها به طرف سقف است. استالاگميت نوع ديگري از رسوبات ستوني شكل است كه بر كف غار هاي آهكي شكل مي گيرد و دليل بوجود آمدن آن چكيدن قطرات حاوي مقدار زيادي مواد معدني محلول و ته نشين شدن و رسوب كردن كلسيم كربنات است.

در هنگام بازديد از غارهاي حاوي استالاكتيت ها و استالاگميت ها از بازديد كنندگان درخواست مي شود به ديواره ها و سنگ ها دست نزنند. دليل اين موضوع به طور كلي ادامه داشتن رشد تشكيل سنگ ها و استالاكتيت هاست. از ان جا كه شكل گرفتن سنگ ها به دليل رسوب مواد معدني محلول در آب بر سنگ هاي قديمي مي باشد، لذا دست زدن به سنگ ها باعث تخريب بستر رسوب گذاري و از بين رفتن رشد طبيعي آن ها مي شود.
راه هاي زيادي براي بخاطر سپردن اين كه كدام يك از استالاكتيت يا استالاگميت بر سقف ها و كدام يك بر كف پديد مي آيند وجود دارد كه چند نمونه از آن ها در زير بيان شده است استالاكتيت (
StalaCtite) داراي حرف C مي باشد كه از سقف (Ceiling) مي آيد. استالاگميت (StalaGmite) داراي حرف G مي باشد كه از زمين (Ground) مي آيد.


    +   ستون: حاصل رسيدن استالاكتيت و استالاگميت به يكديگر است.


    +   مرواريد غار: گلوله هاي سفيد آهكي و يا در آب هاي آشفته و منقلب به صورت لايه هاي هم مركز در اطراف يك واريزه در مي آيند.

 

 

◄  غارهاي يخي:

نوع ديگري از غار ها كه به غارهاي يخي موسوم هستند ، در زير رسوبات يخچالي به وجود مي آيند. در اين نوع غارها نيز اشكال يخي مثل استالاكتيت و استالاگميتها، زيبايي چشم گيري دارند.


◄  غار ماگمايي:

در اين نوع غارها سنگ هاي ذوب شده از آتشفشان انفجاري ، مثل يك رودخانه جريان مي يابد به تدريج سطح اين روانه سرد شده و بام سنگي ايجاد مي كند كه هنوز ماگماي گرم در زير آن جريان دارد. زماني كه انفجار پايان مي يابد غار به صورت لوله اي تو حالي باقي مي ماند. اين نوع غارها مي توانند به بزرگي چند تونل و يا به اندازه مجاري زهكشي باشند.


◄  غار دريايي:

در اثر برخورد مداوم امواج دريا به ديواره ي پرتگاه ساحلي غار دريايي تشكيل مي گردد. اين نوع غارها محلي براي زندگي ستاره هاي دريايي ،سيل ها و شيرهاي دريايي است.


◄  غار ماسه سنگي:

غارهاي كم عمقي در سطح پرتگاه ها هستند كه تحت تاثير باد و آب ايجاد مي گردند.

 

mehrab_nazari بازدید : 371 پنجشنبه 14 آذر 1392 نظرات (0)

 

مهراب نظری

کلاس 05

دبیرستان شهید نصیری

 

استالاكتيت

اشكال مخروطي توپر يا متخلخل كه از سقف غار آويزان است. واژه استالاكتيت واژه اي يوناني است و برگرفته از مفهوم چكيدن و چكه كردن مي باشد. معناي لفظي اين واژه «آن چه كه ميچكد» مي باشد. استالاكتيت نوعي رسوبات استوانه اي يا مخروطي مي باشد كه بر سقف يا ديواره هاي غار هاي آهكي تشكيل مي شود و گاهي از آن با نام سنگ چكنده ياد مي كنند. استالاكتيت ها از ته نشين شدن كلسيم كربنات و ديگر مواد معدني، كه رسوبات آب هاي حاوي مواد معدني هستند تشكيل مي شوند. شكل مقابل اين رسوبات كه در زير استالاكتيت ها تشكيل مي شود استالگميت ناميده مي شود. در صورت وجود زمان كافي استالاگميت ها مي توانند به استالاكتيت ها رسيده، و تشكيل يك ستون دهند.

 

هر استالاكتيت ابتدا تنها با چكيدن قطرات آب هاي حاوي كلسيم كربنات از سقف بوجود مي آيد. هنگامي كه يك قطره مي چكد، حلقه اي بسيار نازك از كلسيت تشكيل مي دهد. با تداوم اين عمل هر قطره حلقه نازك ديگري از رسوبات كلسيت از خود بر جاي مي گذارد. سرانجام، اين حلقه ها يك حفره يا سوراخ بسيار باريك ايجاد مي كنند. اين سوراخ ها كه قطري حدود نيم ميليمتر دارند، ممكن است بسيار طولاني باشند اما بسيار نازك و ترد مي باشند. در صورتي كه به نحوي راه اين سوراخ بسته شود، قطرات آب از بالا به بيرون سر ريز شده، باعث ته نشين شدن مقدار بيشتري كلسيت و مخروطي تر كردن شكل استالاكتيت مي شوند. قطراتي كه از استالاكتيت مي چكند كلسيت بيشتري در پايين ته نشين مي كنند. اين ته نشين ها سر انجام استالاگميت هاي گرد يا مخروطي شكلي را پديد مي آورند. بر خلاف استالاكتيت ها استالاگميت ها هيچ گاه داراي سوراخي در داخل خود نمي باشند.
هر چند كه ادعا شده است بلند ترين استالاكتيت شناخته شده در جهان در تالار راريتيس واقع در برزيل قرار دارد و داراي بيست متر ارتفاع مي باشد، برخي از غار نوردان در هنگام جست و جو حتي با استالاكتيت هاي بلند تري هم مواجه شده اند.

استالاكتيت ها مي توانند بر روي سقف هاي بتني و ساختمان ها هم پديد آيند. هر چند كه در اين اماكن به نسبت محيط هاي ديگر استالاكتيت ها به مراتب سريع تر شكل مي گيرند. استالاكتيت ها حتي بوسيله گدازه هاي آتشفشاني هم شكل مي گيرند كه البته مكانيزم شكل گيري آن ها بسيار متفاوت است.

mehrab_nazari بازدید : 396 پنجشنبه 14 آذر 1392 نظرات (0)

 

مهراب نظری

کلاس 05

دبیرستان شهید نصیری

 

تصفيه آب

.تصفیه آب (به انگلیسی: Water purification)‏، به فرآیندهایی گفته می‌شود که طی آن مواد شیمیایی نامطلوب، آلاینده‌های بیولوژیکی، جامدات معلق و گازها از آب آلوده حذف می‌شوند، تا قابل آشامیدن یا مصرف کشاورزی گردد. به طور کلی روش‌های مورد استفاده عبارتند از فرآیندهای فیزیکی مانند فیلتراسیون، ته‌نشینی، تقطیر و فرآیندهای زیستی مانند فیلترهای شنی و ماسه‌ای کند، کربن اکتیو (زغال فعال) و فرایندهای یمیایی ماننشد کلرزنی,اذن زنی، دفلوکولانت، استفاده از تابش الکترومغناطیسی مانند اشعه ماوراء بنفش

 

فرآیند تصفیه آب ممکن است به کاهش غلظت ذرات معلق یا ذرات محلول در آب از جمله ذرات معلق، انگل‌هاباکتری‌ها، جلبک‌ها، ویروس‌ها، قارچ‌هاو طیف وسیعی از مواد محلول و ذرات معلق موجود در آب منجر شود.

روشهای تصفیه اب عبارتند از:

  • تقطیر
  • زلال سازی
  • میکروفیلتراسیون MF
  • اولترا فیلتراسیون UF
  • اشعه ماوراء بنفش UV
  • اسمز معکوس RO

ته نشینی

ته نشینی یکی از درجه های تصفیه است که در بسیاری از موارد قابل قبول نیست و به تصفیهء بیشتر نیاز است.ته نشینی فرآیندی زمان بر است و در برخی مواقع زمان مورد نیاز برای آن عملی نیست.زمان ته نشینی به عوامل بسیاری بستگی دارد مانند:

1.      وزن ذره

2.      شکل ذره

3.      اندازهء ذره

4.      گرانروی و / یا مقاومت اصطکاکی آب، که تابعی از دما است.

برای محاسبهء این زمان قانون استکس وجود دارد: V=2662*(S1-S2)*D^2/z V=سرعت ته نشینی(فوت بر ثانیه( S1=چگالی ذره (lb/ft3) S2=چگالی سیال(lb/ft3) D=قطر ذره(in) z=گران روی(سانتي پواز) در این رابطه فرض می شود که ذرات کروی هستند, تحت فشار مقاومت چسبناکی نیستند و بار الکتریکیندارند.و این قانون بدون این شرایط صحیح نیست.بیشتر ذرات جامد معلق کوچکتر از 0.1mm در سطح آب بار الکتریکی منفی دارند.این بار منجر به دفع شدن ذرات از یکدیگر و پایداری بیشتر آن ودر نتیجه بیشتر شده زمان ته نشینی می شود.معمولا برای خنثی سازی ذرات معلق و نتیجتا بهتر کردن ته نشینی از مواد شیمیایی استفاده می شود. به این مواد شیمیایی در فرآین تصفیه منعقد کننده گفته می شود.و به عمل خنثی سازی ذرات منعقد سازی گویند

.

 

samangolamnia بازدید : 558 پنجشنبه 14 آذر 1392 نظرات (0)

نام:سامان غلام نیا

کلاس0.1

دبیرستان شهیدنصیری

عنوان:انرژی باد

باد هوای در حال حرکت است. باد به وسیلة گرمای غیر یکنواخت که سطح کرة زمین که حاصل عملکرد خورشید است، بوجود می‌آید. از آنجائیکه سطح زمین از سازنده‌های خشکی و آبی قنوعی تشکیل شده‌اند، اشعة خورشید را بطور غیریکنواخت جذب می‌کند. وقتی خورشید در طول روز می‌تابد...

                                                

 

amirahmadi بازدید : 529 یکشنبه 10 آذر 1392 نظرات (0)

استالاگمیت

به صورت سنگال هايي(كنكرسيون) در زير استالاكتيت ها ايجاد مي شوند كه قاعده آنها در كف غار و راس آنها به طرف سقف است. استالاگميت نوع ديگري از رسوبات ستوني شكل است كه بر كف غار هاي آهكي شكل مي گيرد و دليل بوجود آمدن آن چكيدن قطرات حاوي مقدار زيادي مواد معدني محلول و ته نشين شدن و رسوب كردن كلسيم كربنات است.

amirahmadi بازدید : 466 یکشنبه 10 آذر 1392 نظرات (1)

                     استالاکتیت

چکَنده یا استالاکتیت (Stalactite) (نام‌های دیگر: دنگال، کلفهشنگ) ستونی از مواد معدنی است که به صورت قندیلی از سقف غار آویخته باشد.در زیر چکنده ستونچه‌ای به‌وجود می‌آید که چکیده نامیده می‌شود. این دو به مرور زمان به هم می‌رسند و ستون واحدی را تشکیل می‌دهند.چکنده کربنات کلسیم که از سقف غارهای آهکی می‌آویزد از متداول‌ترین انواع آن است.

amirahmadi بازدید : 460 شنبه 09 آذر 1392 نظرات (0)

               خواص آب

آب یکی از مواد مایع و فراوان‌ترین مادهٔ مرکب بر روی سطح کره زمین و بستر اولیه حیات به شکلی که امروزه می‌شناسیم، است. بیش از ۷۵٪ وزن یک انسان از آب تشکیل شده‌است و نیز بیش از ۷۰٪ سطح کره زمین را آب پوشانده است (نزدیک به ۳۶۰ میلیون از ۵۱۰ میلیون کیلومتر مربع) با وجود این حجم عظیم آب تنها ۲ درصد از آبهای کره زمین شیرین و قابل شرب است و باقی آن به علت محلول بودن انواع نمک‌ها خصوصاً نمک طعام غیر قابل استفاده است. از همین دو درصد آب شیرین بیش از ۹۰ درصد به صورت منجمد در دو قطب زمین و دور از دسترس بشر واقع شده‌است.


 

sattar بازدید : 469 پنجشنبه 07 آذر 1392 نظرات (0)

آب سخت

آبی که در طبیعت وجود دارد تقریبا همیشه ناخالص می باشد. زیرا که اغلب دارای گچ ، آهک ، نمک طعام ، ترکیبات منیزیم ، آهن ، اکسیژن و ازت ، انیدرید کربنیک ، ترکیبات آلی و غیره است و مقدار این اجسام در آبهای مختلف متفاوت است در آب اجسام دیگری مانند گل و لای و غیره هستند که معلق می باشند و مقداری باکتری هم در آبها یافت می شود.

mohamad بازدید : 502 پنجشنبه 07 آذر 1392 نظرات (0)

به نام خدا

مهدی محمدیاری ملاصدرا06  اقای سلامی موضوع.کاتیون های سنگین

تاثیرات pb2+ بر خون موجودات

سالهاست که سرب به عنوان نوعی آلوده کننده محیط زیست حیات موجودات زنده را تهدید می کند. غلظت سرب در چرخه های زیستی به چندین عامل از جمله خاک، گونه های گیاهی منطقه، ویژگی های آب و نوع کانی های آن بستگی دارد. هدف از این مطالعه اندازه گیری میزان تحرک سرب، قابل جذب بودن و نیز مشخص کردن اثر آن بر اندیس های خونی در حوالی معدن سرب فیض آباد راور است. بخش اولیه مطالعه نشان داد که غلظت سرب در آب، خاک و نیز گیاهان منطقه بالاست (در مقایسه با نمونه های مشابه از سایر مناطق)(P<0.05). به منظور بررسی جزئیات اثر سرب بر خون، نمونه های خونی، به صورت پرسشنامه ای از مردانی که در منطقه آلوده زندگی می کردند، گرفته شد (تعداد 24 نفر به عنوان گروه آزمونی ). سپس فاکتورهایی مثل Hg، MCH، MCHC، MCV، HCT و RBC اندازه گیری شدند. پس از مقایسه این فاکتورها با افراد مشابه از مناطق غیر آلوده (شهر راور) (24نفر به عنوان شاهد) نتایج زیر به دست آمد. هماتوکریت (HCT) و هموگلوبین (Hg) به طور معنی داری در افراد ساکن در محل آلوده نسبت به گروه شاهد پایین تر بود(P<0.05). اگرچه تعدادگلبول قرمز (RBC)، حجم متوسط گلبول قرمز(MCV)، مقدار هموگلوبین هر گلبول قرمز (MCH) و نیز غلظت هموگلوبین در یک گلبول قرمز (MCHC) تغییرات اندکی نشان دادند، اما این تغییرات به سطح معنی دار نمی رسد.نتیجه گیری این خواهد بود که ترکیبات سرب موجود در منطقه به صورت محلول در منابع آب می توانند به چرخه های زیستی وارد شوند و در نتیجه توسط بافت های زنده از جمله مغز استخوان جذب و بدین وسیله اندیس های خونی را متأثر سازند

mehrab_nazari بازدید : 368 پنجشنبه 07 آذر 1392 نظرات (0)

 

اسيدها و بازها

 

مهراب نظری 

کلاس  05

دبیرستان شهید نصیری 

 اسید و باز

کلمه «اسید» (به انگلیسی:acid) از واژه لاتین acidusبه معنای «ترش مزه» آمده‌است. تعاریف گوناگونی برای اسید و باز وجود دارد، از جمله تعاریف آرنیوس، لوری-برونستد و لوییس.

danyallabbasi بازدید : 456 چهارشنبه 06 آذر 1392 نظرات (0)

قضیه فلسفه شیمی

نام دانیال عباسی

کلاس05

دبیرستان شهید نصیری

چرا فلسفه شیمی از میان برود؟ 


 
   
متأسفانه فلسفه ی شیمی را در بیشتر نوشته های معاصر فلسفه ی علم نادیده گرفته اند. این مقاله ادعا می کند که این غفلت مایه ی تأسف است و می توان از عطف توجه فلسفی بیشتر به مجموعه ی مباحثی که فلسفه ی شیمی تعریف می کند نکات بسیار آموخت. [در این مقاله] نقش احتمالی این حوزه در مباحث فعلی از قبیل تقلیل، قوانین، تبیین و فراآیی بررسی می شود، زیرا می توان بینشی را که حاصل چنین پژوهشی است در فلسفه ی ذهن و فلسفه ی علوم اجتماعی به کار برد. بخش نخست مقاله را می خوانیم.


 

danyallabbasi بازدید : 476 چهارشنبه 06 آذر 1392 نظرات (0)

عناصر کمیاب و منابع آنها در روی زمین

نام دانیال عباسی کلاس ٠٥ دبیرستان نصیری

 

عناصر کمیاب زمین، عنصرهای ۵۸ تا ۷۱جدول تناوبی را تشکیل میدهند و جزو عناصر واسطه داخلی می باشند. 
 
  
 
  
عناصر کمیاب زمین، عنصرهای ۵۸ تا ۷۱جدول تناوبی را تشکیل میدهند و جزو عناصر واسطه داخلی می باشند. وجه تسمیه لانتانیدها از عنصر ۵۷ جدول یعنی لانتان(La)گرفته شده است. باید توجه داشت که خواص شیمیایی این دسته از عناصر مشابه خواص لانتان می باشد. در واقع اطلاق نام عناصر نادر یا کمیاب، از آنجائیکه این عناصر نه کمیابند و نه به آن دسته از اکسیدهای خاکی مانند(اکسیدهای)آلومینیوم، زیرکونیوم و ایتریوم تعلق دارند، غلط مصطلح است. زمانی که نخستین اعضای این گروه برای اولین بار کشف شد، بصورت اکسید مجتمع گردیده بودند و از آنجایی که این اکسیدها تا اندازهای به اکسیدهای کلسیم، منیزیم و آلومینیوم که بعدها به آنها عنوان اکسیدهای خاکی اطلاق گردید شباهت دارند، لذا این عناصر به نام عناصر کمیاب معروف گردیدند. در هر صورت باید توجه داشت که سریوم در پوسته زمین بسیار فراوان تر از سرب بوده و نیز ایتریم از قلع بسیار فراوانتر است و حتی بایداذعان نمود که کمیاب ترین خاکهای کمیاب، به استثنای پرومتیم، بسیار از عناصر گروه پلاتین فراوانترند.

 

تعداد صفحات : 15

درباره ما
Profile Pic
داریوش سلامی ..................................................................................... کارشناسی ارشد شیمی فیزیک................................................................... دبیرشیمی ناحیه1رشت .......................................................................... .shimisalami@yahoo.com ................................................................ شیمی یکی از مهمترین علوم پایه است که نقش کلیدی در زندگی بشر امروزی دارد و هر جنبه از زندگی ما ارتباط نزدیکی با این علم دارد.
اطلاعات کاربری
  • فراموشی رمز عبور؟
  • نظرسنجی
    به سایت نمره بدهید.
    پیوندهای روزانه
    صفحات جداگانه
    آمار سایت
  • کل مطالب : 1015
  • کل نظرات : 183
  • افراد آنلاین : 2
  • تعداد اعضا : 461
  • آی پی امروز : 81
  • آی پی دیروز : 108
  • بازدید امروز : 374
  • باردید دیروز : 414
  • گوگل امروز : 0
  • گوگل دیروز : 9
  • بازدید هفته : 2,035
  • بازدید ماه : 6,831
  • بازدید سال : 54,242
  • بازدید کلی : 1,546,870
  • کدهای اختصاصی