loading...
شیــمـی سـلــامـــی/ شیمی دبیرستان
آخرین ارسال های انجمن
mohamad بازدید : 238 شنبه 04 مهر 1394 نظرات (0)

                 به نام خدا                                              مهدي محمدياري سوم تجربي                                          نام دبير آقاي سلامي                                                آشنايي با مواد شيميايي                    

مواد شیمیایی، موادی‌اند که ترکیبی خاص دارند. شیمی‌دانی به نام جوزف پراست مفهوم مواد شیمیایی را در سده ۱۸پس از آزمایش‌ها و کار روی ترکیباتی مانند مس کربنیت بکار برد. او نتیجه گرفت همهٔ نمونه‌ها از یک ترکیب، یک نوع ساختمان دارند و این نمونه‌ها از همهٔ ابعاد مانند یکدیگرند و این ابعاد مطابق با میزان عناصر موجود در ترکیب، متغیرند. این قضیه اکنون به قانون ثابت ترکیب مشهور است.

بعدها با پیشرفت روش‌ها برای ترکیب مواد شیمیایی، مخصوصا در شیمی آلی، کشف شمار بیشتری از عناصر شیمیایی و فراگیری فنون نو در تجزیه شیمیایی که از آن برای تصویه عناصر و ترکیبات از مواد شیمیایی بکار می‌بردند، راهنمایی برای پایه‌گذاری شیمی نوین بود. این مفاهیم در بسیاری از کتاب‌های شیمی تعریف شده‌اند.

یک نمونهٔ رایج در تعریف مواد شیمیایی، آب است. این ماده همه جا ویژگی یکسان دارد و نسبت هیدروژن به اکسیژن آن همیشه به یک اندازه است؛ یعنی نمونه آن چه از رودخانه گرفته شود و چه در آزمایشگاه ساخته‌شود، یک ویژگی دارد. مواد شیمیایی که در یک فرآیند با هم واکنش می‌دهند دیگر نمی‌توانند از هم جدا شوند و در طبیعت مواد شیمیایی که خالص یافت شوند بسیار نادر هستند. شماری از این نوع مواد شیمیایی عبارتند از: الماس، طلا، سدیم کلرید و شکر (ساکارز). بطور کلی مواد شیمیایی از سه نوع جامد، مایع و گاز تشکیل می‌شوند و ممکن است که مواد شیمیایی با تغییر فشار و حرارت به شکل‌های مختلف خود درآید.
شرکت کیمیا پارس شایانکار تواید کننده، عرضه کننده و تامین کننده  مواد اولیه کارخانجات مواد شیمایی ، پترو شیمی ، حفاری ، رنگ و رزین ، مواد شوینده ، آب و فاضلاب ، دارو سازی ، غذایی و . . .  می باشد    

سود پرک %99-98
سود پرک %99-98
سود پرک | سود سوز آور | کاستیک سودا | قیمت سود پرک | فروش سود کاستیک | فروش سود پرک |فروش کاستیک سودا
کربنات سدیم
کربنات سدیم
کربنات سدیم | سدیم کربنات کربنات سدیم سبک |سودا اش کربنات سدیم سنگین | نمک سدیم
سولفات سدیم %99-97
سولفات سدیم %99-97
سولفات سدیم | سدیم سولفات نمک سدیم | نمک سدیم سولفوریک اسید نمک گلوبر
سولفات آمونیوم
سولفات آمونیوم
سولفات آمونیوم | آمونیوم سولفات دی آمونیوم سولفات | سولفات هیدروژن آمونیوم | سولفات ازت
گوگرد
گوگرد
گوگرد | سولفور | گوگرد گازی گوگرد نفتی | گوگرد پودری | گوگرد کلوخ | گوگرد گرانول | مواد شیمیایی
پرکلرین %65
پرکلرین %65
پرکلرین | هیپو کلریت کلسیم | Ca(OCl)2 | Calcium Hypochlorite | مواد شیمیایی
پارافین
پارافین
پارافین | Paraffin | پارافین مایع و جامد | CH2n+2
سود مایع %50-48
سود مایع %50-48
سود مایع | هیدروکسید سدیم مایع سوز آور | قیمت سود مایع | فروش سود مایع
اسید سولفوریک %98
اسید سولفوریک %98
اسید سولفوریک | فروش اسید سولفوریک | قیمت اسید سولفوریک | تولید اسید سولفوریک | مواد شیمیایی |
اسید استیک%99
اسید استیک%99
اسید استیک | Acetic Acid | قیمت اسید استیک | فروش اسید استیک | اسید اتانوئیک اسید اتیلیک | خرید اسید استیک
اسید فسفریک
اسید فسفریک
اسید فسفریک | فروش اسید فسفریک | فسفریک اسید خوراکی و صنعتی | قیمت اسید فسفریک |
اسید نیتریک
اسید نیتریک
اسید نیتریک | Nitric Acid | نیترات هیدروژن | جوهر شوره | فروش اسید نیتریک | قیمت اسید نیتریک | خرید اسید نیتریک |
اسید بوریک
اسید بوریک
اسید بوریک | Boric Acid | بوراسیک اسید | اورتوبوریک | قیمت اسید بوریک | فروش اسید بوریک
کلر
کلر
کلر | Chlore | مواد شیمیایی | فروش کلر | | خرید کلر | قیمت کلر |
اسید سیتریک
اسید سیتریک
اسید سیتریک | Citric Acid | جوهر لیمو | فروش اسید سیتریک | اسید سیتریک خشک | فروش اسید سیتریک |
اسید سولفامیک
اسید سولفامیک
اسید سولفامیک | Sulfamic acid H۳NSO۳ فروش اسید سولفامیک | قیمت اسید سولفامیک | خریدار اسید سولفامیک
اسید کلریدریک
اسید کلریدریک
اسید کلریدریک | قیمت اسید کلریدریک| فروش اسید کلریدریک| هیدروژن كلراید | اسید كلروهیدریك | HCl
اسید فرمیک %85
اسید فرمیک %85
اسید فرمیک | قیمت اسید فرمیک | فروش اسید فرمیک | خرید اسید فرمیک | متانوئیک اسید | مواد شیمیایی
حلال ها
حلال ها
حلال ها | تینرها | گلایکول ها | آروماتیک ها | استرها | حلال های نفتی | الکل ها | کتون ها | آمین ها
پرمنگنات
پرمنگنات
پرمنگنات | فروش پرمنگنات پتاسیم | قیمت پرمنگنات پتاسیم | فروشنده پرمنگنات پتاسیم |
گلایکول ها
گلایکول ها
فروش گلایکول ها | MEG | DEG | TEG | قیمت مونو اتیلن گلایکول | قیمت دی اتیلن گلایکول | قیمت تری اتیلن گلایکول
آمونیوم پرسولفات
آمونیوم پرسولفات
آمونیوم پرسولفات | پر سولفات آمونیوم | فروش | آمونیوم پرسولفات تولیید | فروش آمونیوم پرسولفات |
متابی سولفید سدیم
متابی سولفید سدیم
متابی سولفید سدیم | متابی سولفید سدیم صنعتی | متابی سولفید سدیم قیمت |فروش متابی سولفید سدیم |
جوش شیرین
جوش شیرین
جوش شیرین | بی کربنات سدیم Sodium Bicarbonate | NaHCo3 | مواد شیمیایی
متانول%99
متانول%99
متانول | الکل صنعتی | حلال | متانول ایران | متانول فله و بشکه ای | فروش متانول | قیمت متانول |
سولفات آلومینیوم
سولفات آلومینیوم
سولفات آلومینیوم | |کیک آلوم | آلومینیوم سولفات | قیمت سولفات آلومینیوم | فروش سولفات آلومینیوم |
سدیم تری پلی فسفات
سدیم تری پلی فسفات
سدیم تری پلی فسفات | سدیم تری پلی فسفات سبک و سنگین | فروش سدیم تری پلی فسفات | قیمت سدیم تری پلی فسفات
قیر
قیر
قیر | Bitumen | قیر پالایشگاه | فروش قیر | قیمت قیر |
زانتان گام
زانتان گام
زانتان گام | فروش زانتان گام | قیمت زانتان گام |
پلی آلومینیوم کلراید
پلی آلومینیوم کلراید
پلی آلومینیوم کلراید |فروش پلی آلومینیوم کلراید | قیمت پلی آلومینیوم کلراید |
CMC
CMC
CMC | کربوکسی متیل سلولز | فروش CMC | قیمت CMC |

 

 

mohamad بازدید : 279 شنبه 04 مهر 1394 نظرات (0)

                   به نام خدا                     مهدي محمدياري  سال سوم تجربي       نام دبير=آقاي سلامي                         

شیمی آلی و شیمی معدنی

                                               شيمي آلی قسمتی از علم شیمی است که بررسی هیدرو کربن ها می پردازد . به همین دلیل به آن شیمی ترکیبات کربن نیز گفته می شود . واژه گمراه کننده «آلی» یادگار روزهایی است که مواد شیمیایی را بسته به این که از چه منبعی به دست می‌آمدند، به دو دسته معدنی و آلی تقسیم می‌کردند.
مواد معدنی آنهایی بودند که از معادن استخراج می‌شدند و مواد آلی آنهایی که از منابع گیاهی یا حیوانی یعنی از موادی که توسط موجودات زنده تولید می‌شدند، به دست می‌آمدند.
در واقع تا پیرامون سال 1850 بسیاری از شیمیدانان معتقد بودند، که خاستگاه مواد آلی باید زیستارها (موجودات زنده) باشند و در نتیجه این مواد را هرگز نمی‌توان از مواد معدنی سنتز نمود.
موادی که از منابع آلی به دست می‌آیند، در یک خصوصیت مشترکند: همه آنها دارای عنصر کربن هستند.
حتی پس از آن که مشخص شد این مواد لزوماً نبایستی از منابع زنده به دست آیند و می‌توان آنها را در آزمایشگاه سنتز کرد، باز هم مناسبت داشت تا نام آلی برای توصیف آنها و موادی همانند آنها حفظ شود. این تقسیم‌بندی بین مواد معدنی و آلی تا به امروز حفظ شده است.
امروزه اگر چه هنوز بسیاری از ترکیبات کربن به آسانی از منابع گیاهی و جانوری بدست می‌آیند، ولیکن بسیاری از آنها نیز سنتز می‌شوند. از ترکیبات گاهی از مواد معدنی مانند کربناتها و سیانیدها سنتز می‌شوند ولی غالباً از سایر مواد آلی تهیه می‌گردند.
دو منبع بزرگ مواد آلی که از آنها مواد آلی ساده تأمین می‌شوند، نفت و ذغال سنگ است. (هر دو اینها از مفهوم قدیمی «آلی» بوده و فراورده کافت گیاهان و جانوران هستند). این ترکیبات ساده به عنوان مصالح ساختمانی، در ساختن ترکیبات بزرگتر و پیچیده‌تر مصرف می‌شوند.
نفت و زغال سنگ سوختهای فسیلی هستند که در طی هزاران سال بر روی هم انباشته شده وغیر قابل جایگزینی هستند. این مواد - بویژه نفت - جهت رفع نیازهای انرژی که به طور دائم در حال افزایش است، با سرعت خطرناکی مصرف می‌گردند. امروزه کمتر از 10% نفت برای ساختن مواد شیمیائی مصرف می‌شود و قسمت اعظم آن برای تولید انرژی سوزانده می‌شود. خوشبختانه منابع دیگری برای ایجاد نیرو از قبیل منبع خورشیدی، گرمای زمین، باد، امواج، کشند و انرژی هسته‌ای وجود دارد.
اما چگونه می‌توان منبع دیگری به جای مواد آلی پیدا نمود؟ البته در نهایت باید به جایی که سوختهای سنگواره‌ای از آنجا ناشی می‌شوند یعنی توده زیستی برگشت نمود، اما این بار به طور مستقیم وبدون دخالت هزاران سال. توده زیستی قابل تجدید است و چنانچه به طور مناسب مصرف شود، تا زمانی که ما بر روی این سیاره بتوانیم وجود داشته باشیم آن هم باقی می‌ماند. در ضمن می‌گویند که نفت با ارزش‌تر از آن است که سوزانده شود.
چه خصوصیتی در ترکیبات کربن وجود دارد که آنها را از ترکیبات مربوط به صد و چند عنصر دیگر جدول تناوبی متمایز می‌سازد؟ لااقل قسمتی از این جواب به نظر می‌رسد که چنین باشد: تعداد بسیار زیادی از ترکیبات کربن وجود دارند که مولکولهای آنها می‌توانند بسیار بزرگ و پیچیده باشد.
تعداد ترکیباتی که دارای کربن هستند چندین برابر بیشتر از تعداد ترکیبات بدون کربن می‌باشد. این مواد آلی در خانواده‌های مختلف قرار می‌گیرند، و معمولاً در بین مواد معدنی، همتایی ندارند.
مولکولهای آلی شامل هزاران اتم شناخته شده‌اند، و ترتیب قرار گرفتن اتمها حتی در مولکولهای نسبتاً کوچک بسیار پیچیده است. یکی از مسایل اصلی در شیمی آلی، آگاهی از طرز قرار گرفتن اتمها در مولکولها و یا تعیین ساختمان ترکیبات است.
راه‌های زیادی برای شکستن این مولکولهای پیچیده و یا نوآرایی آنها برای ایجاد مولکولهای جدید وجود دارد؛ روشهای مختلفی برای اضافه نمودن اتمهای جدید به این مولکولها و یا جایگزین نمودن اتمهای جدید به جای اتمهای قدیم وجود دارد. بخش کلان شیمی آلی به پژوهش در مورد این واکنشها اختصاص دارد، یعنی تشخیص این که این واکنشها کدامند، چگونه انجام می‌شوند و چگونه می‌توان از آنها برای سنتز یک ترکیب دلخواه استفاده نمود.
چه ویژگی در اتم کربن وجود دارد که می‌توان این همه ترکیب را از آن ساخت؟ جواب این سوال را آگوست ککوله در سال 1854 در حالی که سوار بر اتوبوسی در لندن بود، یافت.
«در یک عصر دلپذیر تابستان با آخرین اتوبوس برمی‌گشتم؛ خیابانهای شهر بر خلاف بقیه ساعات که شلوغ و پر از جنب و ‌جوش است، خلوت و آرام بود، در این حال من در خود فرورفتم! اتمها در برابر چشمانم به جست و خیز مشغول بودند ... من دیدم که چگونه همواره دو اتم کوچکتر با یکدیگر متحد شده، تشکیل زوج می‌دهند، چگونه یک اتم بزرگتر دو اتم کوچکتر را در آغوش می‌گیرند و چگونه اتم بزرگتر سه یا چهار اتم کوچکتر را نگاه می‌دارد، در عین حال همه آنها در جنبش و رقص بودند. من دیدم که چگونه بزرگترها زنجیری میساختند ... بخشی از شب را صرف نمودم تا چیزهایی را که در رؤیا دیده بودم بر روی کاغذ بیاورم». آگوست ککوله، 1890
اتمهای کربن می‌توانند به میزانی که برای اتم هیچ عنصر دیگری مقدور نیست، به یکدیگر متصل شوند. اتمهای کربن می‌توانند زنجیرهایی شامل هزاران اتم و یا حلقه‌هایی با اندازه‌های متفاوت ایجاد نمایند؛ زنجیرها و حلقه‌ها می‌توانند دارای شاخه و پیوندهای عرضی باشند. به اتمهای کربن این زنجیرها و حلقه‌ها، اتمهای دیگری که عمدتاً هیدروژن و همچنین فلوئور، کلر، برم، ید، اکسیژن، نیتروژن، گوگرد، فسفر و سایر اتمهای گوناگون میپیوندد.
هر آرایش مختلف از اتمها مربوط به ترکیب متفاوتی است، و هر ترکیب یک رشته ویژگیهای شیمیایی و فیزیکی ویژه خود را دارد. از این رو غیرمنتظره نیست که امروزه بیشتر از ده میلیون ترکیب شناخته شده کربن وجود داشته باشد و هر سال به این تعداد نیم میلیون ترکیب تازه افزوده گردد. تعجب‌آور نیست که بررسی این ترکیبات، رشته ویژه ای را در شیمی به خود اختصاص دهد.
شیمی آلی اهمیت فوق‌العاده زیادی در تکنولوژی دارد و در واقع، شیمی رنگدانه‌ها و داروها، کاغذ و جوهر، رنگهای نقاشی و پلاستیکها، بنزین و تایرهای لاستیکی است؛ همچنین، شیمی غذایی است که می‌خوریم و لباسی است که می‌پوشیم.
شیمی آلی شالوده زیست شناسی و پزشکی است. ساختمان موجودات زنده، به غیر از آب، عمدتاً از مواد آلی ساخته شده‌اند؛ مولکولهای مورد بحث در زیست شناسی مولکولی همان مولکولهای آلی هستند. زیست شناسی در مقیاس مولکولی همان شیمی آلی است.
شاید دور از انتظار نباشد که بگوئیم ما در عصر کربن زندگی می‌کنیم. هر روزه، روزنامه‌ها ذهن ما را متوجه ترکیبات کربن نظیر کلسترول و چربیهای اشباع نشده، هورمونها و استروئیدها، حشره کشها و فرومونها، عوامل سرطانزا و شیمی درمانی، DNA و ژنها می‌نمایند. به خاطر نفت، جنگها به راه افتاده است.
وقوع دو فاجعه بشریت را تهدید می‌کند و هر دو ناشی از تجمع ترکیبات کربن در جو است؛ یکی نازک شدن لایه ازون که عمدتاً به واسطه وجود کلروفلوئورو کربنها است و دیگری پدیده گلخانه که به خاطر حضور متان، کلروفلوئور و کربنها و سرآمد همه کربن دی‌اکسید است.
شاید به همین مناسبت بوده است که مجله Science در سال 1990، الماس را که یکی از فرمهای آلوتروپی کربن است به عنوان مولکول سال انتخاب کرده است. و مولکول آلوتروپ تازه‌یاب فولرن باکمینستر کربن 60 (buckminsterfullerene-C60) است که هیجان بسیاری را در دنیای شیمی ایجاد کرده است، هیجانی که از «زمان ککوله تاکنون» دیده نشده است.
در بحث شیمی آلی ، آموختن اعداد یونانی و پیشوند های اعداد یونانی به عنوان یک پیش نیاز مطرح می گردد . این اعداد در نام گذاری انواع هیدرو کربن ها مصرف دارند                                                                  

 

مواد شیمیایی بطور عمده به دو گروه بزرگ مواد معدنی و مواد آلی تقسیم بندی می‌شوند. هر یک از این دو گروه ، در دو مبحث شیمی آلی و شیمی معدنی بررسی می‌شوند. 

 

 

مواد شیمیایی آلی 

در قدیم ، ماده آلی به ماده‌ای اطلاق می‌گردید که بوسیله بدن موجودات زنده ساخته می‌شد. تا اینکه در سال 1828 ، "وهلر" (Wohler) دانشمند آلمانی ، برای اولین بار جسمی به نام اوره به فرمول CO(NH2)2 را در آزمایشگاه از یک ترکیب معدنی به نام ایزوسیانات تهیه نمود و از آن پس معلوم شد که می‌توان مواد آلی را نیز در آزمایشگاه ساخت.

امروزه بیش از یک میلیون نوع ماده آلی شناخته شده است که بسیاری از آنها را در آزمایشگاهها تهیه می‌کنند. مواد آلی ، به مواد غیر معدنی گفته می‌شود و با مواد معدنی تفاوتهای کلی در چند مورد دارند. 


مواد شیمیایی معدنی 

اگر شیمی آلی به عنوان شیمی ترکیبات کربن ، عمدتا آنهایی که شامل هیدروژن یا هالوژنها به علاوه عناصر دیگر هستند، تعریف شود، شیمی معدنی را می‌توان بطور کلی به عنوان شیمی عناصر دیگر در نظر گرفت که شامل همه عناصر باقیمانده در جدول تناوبی و همینطور کربن ، که نقش عمده‌ای در بیشتر ترکیبات معدنی دارد، می‌گردد.

 

شیمی آلی - فلزی ، زمینه وسیعی که با سرعت زیاد رشد می‌کند، به علت اینکه ترکیبات شامل پیوندهای مستقیم فلز - کربن را بررسی می‌کند دو شاخه را بهم مرتبط می‌سازد. همانطوری که می‌توان حدس زد، قلمرو شیمی معدنی با فراهم کردن زمینه‌های تحقیقی اساسا نامحدود ، بسیار گسترده است. 

مقایسه مواد آلی و مواد معدنی 

مواد شیمیایی آلی و معدنی با همدیگر تفاوتهای کلی دارند که عبارتند از:

 

در تمام مواد آلی حتما کربن وجود دارد، در صورتی که مواد معدنی بدون کربن بسیارند. ضمنا در ترکیبات آلی ، اتمهای کربن می‌توانند با یکدیگر ترکیب شوند و زنجیرهای طویل تشکیل دهند، در حالی‌که این خاصیت در عناصر دیگر خیلی کمتر دیده می‌شود.

مقاومت مواد آلی در برابر حرارت از مواد معدنی کمتر است.

اغلب واکنش‌های میان مواد آلی کند و دو جانبه یا تعادلی هستند، در صورتی‌که اغلب واکنش‌های معدنی تند می‌باشند.

در ترکیبات آلی ، ممکن است 2 یا چند جسم مختلف با فرمولهای ساختمانی مختلف ، دارای یک فرمول مولکولی باشند که در این صورت به آنها ایزومر یا همفرمول گفته می‌شود. مثلا الکل معمولی C2H5OH با جسمی به نام اتر اکسید متیل CH3OCH3 همفرمول یا ایزومر است. زیرا هر دو دارای فرمول بسته یا مولکولی C2H6O هستند، در صورتی که پدیده ایزومری در ترکیبات معدنی وجود ندارد. 


تقسیم بندی مواد شیمیایی آلی 

عناصر تشکیل دهنده ترکیبات شیمیایی آلی به ترتیب فراوانی مطابق زیر است:

  

 فلزات , هالوژنها , C , H , O , N , S , P , As . فراوانترین چهار عنصر N , O , H , C عناصر اصلی سازنده مواد آلی به حساب می‌آیند. زیرا اغلب اجسام آلی از این چهار عنصر تشکیل یافته‌اند و با توجه به همین مطلب ، مواد آلی را به چهار دسته کلی تقسیم می‌کنیم: 

هیدروکربنهای ساده 

ترکیباتی هستند که فقط از H , C درست شده‌اند و به همین دلیل ، هیدروکربن شده‌اند. آنها با فرمول کلی CxHy نمایش می‌دهند. بسته به اینکه y , x چه اعدادی باشند، هیدروکربنهای گوناگون یافت می‌شوند. 

هیدروکربنهای اکسیژن‌دار 

ترکیباتی هستند که از O , H , C درست شده اند و با فرمول کلی CxHyOz نشان داده می‌شوند. 

هیدروکربنهای نیتروژن‌دار 

ترکیباتی هستند که از N , H , C درست شده‌اند و با فرمول کلی CxHyNt نشان داده می‌شوند. 

هیدروکربنهای اکسیژن و نیتروژن دار 

ترکیباتی هستند که علاوه بر H ، C ، اکسیژن و نیتروژن و با فرمول کلی CxHyOzNt نمایش داده می‌شوند.

مواد شیمیایی، موادی‌اند که ترکیبی خاص دارند. شیمی‌دانی به نام جوزف پراست این مفهوم را در سده ۱۸ پس از آزمایش‌ها و کار روی ترکیباتی مانند مس کربنیت بکار برد. او نتیجه گرفت همهٔ نمونه‌ها از یک ترکیب، یک نوع ساختمان دارند و این نمونه‌ها از همهٔ ابعاد مانند یکدیگرند و این ابعاد مطابق با میزان عناصر موجود در ترکیب، متغیرند. این قضیه اکنون به قانون ثابت ترکیب مشهور است.

بعدها با پیشرفت روش‌ها برای ترکیب شیمیایی، مخصوصا در شیمی آلی، کشف شمار بیشتری از عناصر شیمیایی و فراگیری فنون نو در تجزیه شیمیایی که از آن برای تصویه عناصر و ترکیبات از مواد شیمیایی بکار می‌بردند، راهنمایی برای پایه‌گذاری شیمی نوین بود. این مفاهیم در بسیاری از کتاب‌های شیمی تعریف شده‌اند.

یک نمونهٔ رایج در تعریف مواد شیمیایی، آب است. این ماده همه جا ویژگی یکسان دارد و نسبت هیدروژن به اکسیژن آن همیشه به یک اندازه است؛ یعنی نمونه آن چه از رودخانه گرفته شود و چه در آزمایشگاه ساخته‌شود، یک ویژگی دارد. مواد شیمیایی که در یک فرآیند با هم واکنش می‌دهند دیگر نمی‌توانند از هم جدا شوند و در طبیعت مواد شیمیایی که خالص یافت شوند بسیار نادر هستند. شماری از این نوع مواد شیمیایی عبارتند از: الماس، طلا، سدیم کلرید و شکر (ساکارز). بطور کلی مواد شیمیایی از سه نوع جامد، مایع و گاز تشکیل می‌شوند و ممکن است که مواد شیمیایی با تغییر فشار و حرارت به شکل‌های مختلف خود درآید.

 

انبار كردن مواد شيميايي

شيوه صحيح نگهداري مواد شيميايي هميشه يكي از مطالب بسيار با اهميت است

مواد شيميايي كه به شيوه ناصحيح در كنار همديگر نگهداري مي شوند ممكن است با همديگر واكنش داده و محصولات خطرناك توليد كنند.

گاهي اوقات نگهداري ناصحيح مواد شيميايي علاوه بر آلودگي، باعث هدررفتن مواد و كاهش خواص و اثرات مواد شيميايي مي شود.

رعايت نكات ذيل مي توان خطرات ناشي از ناسازگاري مواد را حذف كند:  

- ازنگهداري اسيدها در مجاورت بازها يا فلزات فعال مانند سديم- پتاسيم و منيزيم خودداري كنيد.

-از نگهداري جامدات يا اسيدهاي اكسيدكننده در مجاورت اسيدهاي آلي و مواد قابل اشتعال اجتناب نمائيد 

-از نگهداري موادي كه با آب واكنش مي دهند در اطراف سينك دستشويي يا نزديكي محلولهاي آبي خودداري كنيد 

-از نگهداري اسيدها در مجاورت موادي كه در تماس با آنها گازهاي سمي توليد مي كنند اجتناب كنيد (مانند سديم سيانيد- سولفيد آهن )

 

mohamad بازدید : 536 شنبه 09 خرداد 1394 نظرات (0)

                ♥به نام خدا♥                      مهدی محمدیاری ملاصدرا 08                                             

☺دید کلی کاتیون ها و انیون ها و نامگذاری ترکیبات یونی☺

نیروی پیش برنده یک واکنش یونی ، جاذبه الکتروستاتیکی متقابل یون‌های ناهمنام است. این جاذبه باعث آزاد شدن انرژی شبکه می‌شود. انرژی شبکه، عامل مهمی در تعیین تعداد بار منفی یا مثبتی است که اتم‌ها به هنگام تشکیل یک بلور یونی می‌پذیرند.

نامگذاری ترکیبات یونی                                                           

نامگذاری ترکیبات یونی بر قواعدی چند استوار است. ابتدا از کاتیون (یون مثبت) ترکیب نام برده می‌شود و آنیون (یون منفی) پس از آن ذکر می‌شود.


img/daneshnameh_up/a/a0/ddlsup.gif
کاتیون

 

کاتیون

بیشتر کاتیونها ، یونهای تک اتمی‌اند که توسط فلزات بوجود می‌آیند. اگر فلز تنها یک نوع کاتیون ایجاد کند، نام یون ، همانند فلز مربوط است. +Na یون سدیم است. یعنی فلز سدیمی که ابتدا بصورت گازی در آمده است و از سدیم یک الکترون با اعمال انرژی یونش گرفته شده است. 2+Mg یون منیزیم است. 3+Al ، یون آلومینیوم است.

برخی از فلزات بیش از یک نوع کاتیون بوجود می‌آورند. در اینگونه موارد ، با نشان دادن تعداد بار کاتیونها در نامشان آنها را متمایز می‌کنیم. بار این نوع کاتیونها بصورت ارقام لاتین بعد از نام فارسی عنصر قرار داده می‌شود. +Cu ، یون مس (I) و 2+Cu ، یون مس (II) است. در روشی قدیمی‌تر برای متمایز کردن دو نوع یون بوجود آمده از یک فلز ، پسوندی به نام فلز افزوده می‌شود. در این روش ، هرگاه نماد فلزی از لاتین مشتق شده باشد، از نام لاتین فلز استفاده می‌شود.

پسوند "- و" برای یون دارای بار مثبت کمتر و پسوند "- یک" برای یون با بار مثبت بیشتر مورد استفاده قرار می‌گیرد. +Cu ، یون کوپرو و 2+Cu یون کوپریک است. +Fe ، یون فرو و 2+Fe یون فریک است.

توجه کنید که در روش بالا تعداد بارها بروشنی بیان نمی‌شود و نیز این روش برای فلزاتی که بیش از دو نوع کاتیون تولید می‌کنند، قابل استفاده نیست.


img/daneshnameh_up/2/26/ranion.gif
آنیون

 

آنیون

آنیونهای تک‌اتمی از اتم فلزات به وجود می‌آیند. نام آنها از طریق حذف بخش آخر نام عنصر و افزودن پسوند "- ید" به باقیمانده به دست می‌آید. -Cl یون کلرید است. 2-O ، یون اکسید است. 3-N یون نیترید است. اما ، تمام آنیونهایی که نامشان به "ید" ختم می‌شود تک اتمی نیستند. بلکه معدودی آنیونهای چند اتمی نیز نامشان با این پسوند ختم می‌شود. مثلا -CN یون سیانید است. -OH یون هیدروکسید است. 2-O2 یون پروکسید است.

آنیونهای چند اتمی بسیاری شناخته شده‌اند. بعنوان مثال 2-O2 یون پراکسید ، Cr2O7-2 یون کرومات ، SO3-2 یون سولفیت و 3-AsO4 یون آرسنات است.

یون چند اتمی

این یون ، یونی است که از چند اتم که با یکدگیر پیوند کووالانسی دارند، بوجود می‌آید. کایتونهای چند اتمی معدودند و دو نوع نمونه متداول عبارت اند از :

  • +NH4 یون آمونیوم و 2+Hg2 یون جیوه (I) یا یون مرکورو.

  • یون 2+Hg2 یون جیوه I نامیده شده است. زیرا می‌توان آن را متشکل از دو یون +Hg(که با یکدیگر پیوند کووالانسی دارند) در نظر گرفت.

    هشت تایی شدن الکترونهای لایه ظرفیت قاعده اکتت می گویند. فلزات با از دست دادن و نافلزات با گرفتن الکترون تمایل دارند تعداد الکترونهای ظرفیت خود را به هشت برسانند ولی این قاعده عمومیت ندارد برای مثال کمتر فلز واسطه ای از این قاعده پیروی می کند.

    انجام پذیرترین واکنشها آنهایی هستند که طی آنها اتمها از قاعده اکتت پیروی کنند. اتمی که تعداد الکترونها در اوربیتال S و P آخرین لایه کمتر از 8 باشدواکنش پذیر تر است و هر چه با تعداد کمتری الکترون (از دست دادن یا گرفتن) به قاعده 8 تایی برسد واکنش پذیرتر است.

    فلزات کاتیون و نافلزات آنیون تشکیل می دهند.

    آنیون یا کاتیونی که تنها از یک اتم تشکیل شده باشد یون تک اتمی می گویند . معمولا در عناصر اصلی بار یون تک اتمی پایدارتر با تعداد الکترونی که باید از دست بدهد یا بگیرد تا به آرایش گاز نجیب برسد برابر است. (شکل 1 بخش سوم شیمی دوم).

    از واکنش بین یک فلز و یک نافلز یا یون چند تایی نمک یا ترکیب یونی پدید می آید بر این اساس ترکیبات یونی دو دسته هستند 1- دو تایی : که از یک فلز و یک نافلز تشکیل شده اند مانند NaCl,KF .2- چند تایی : از یک فلز و یک یون چند اتمی ساخته شده است. مانند NaNO3 , KClO3

    خواص ترکیبات یونی 1- بلور آنها از یونهای مثبت و منفی تشکیل شده است و پیوند یونی بین یونهای آن برقرار است.2- نقطه ذوب و جوش بالایی دارند که بستگی به انرژی شبکه آنها دارد.3- در حالت مذاب و محلول رسانای جریان برق هستند که میزان رسانایی در آنها به تعداد یون اندازه یون و بار یونها بستگی دارد.4- شکننده هستند. 5- آرایش یونها به صورت یک الگوی تکراری از یونهای مثبت و منفی است که به آن شبکه بلور می گویند.

    انرژی شبکه بستگی به بار یونها و اندازه یونها دارد که انرژی شبکه با بار یونها رابطه مستقیم و با اندازه یونها نسبت عکس دارد. هر چه مقدار انرژی شبکه بیشتر باشد نشاندهنده قویتر بودن پیوند یونی بین یونهاست و بالاتر بودن نقطه ذوب و جوش ترکیب یونی است. برای مقایسه انرژی شبکه دو ترکیب یونی کاتیون را با کاتیون و آنیون را با آنیون از لحاظ بار و اندازه مقایسه می کنیم .

    برای نوشتن فرمول هر ترکیبات یونی  ابتدا فلز(یا یون آمونیم) را درسمت چپ و آنیون تک اتمی یا چند اتمی را در سمت راست آن می نویسیم و سپس جای ظرفیتها را با هم عوض می کنیم . اگر ظرفیتها قابل ساده کردن باشد با هم ساده می کنیم.

    برای نامگذاری ترکیبات یونی دو تایی ابتدا نام فلز را می آوریم و سپس نام نافلز را با پسوند ((ید)) می آوریم مثال ScF اسکاندیم فلوئورید.

    در ترکیبات یونی چند تایی باید فرمول و ظرفیت یونهای چند تایی را حفظ کرد برای نامگذاری این ترکیبات نیز اول نلم فلز و سپس نام یون چند تایی را می آوریم.

    برای یونهای هیدروهالو اکسیژن دار که دارای 4 نوع برای هر هالوژن هستیم که تفاوت آنها در تعداد اکسیژن آنهاست. در این ترکیبات یونی که 4 اکسیژن دارد با پیشوند ((پر)) و یونی که یک اکسیژن دار پیشوند((هیپو )) قبل از نام یون آورده می شود مثال :

    NaClO4 سدیم پر کلرات – NaClO3 سدیم کلرات – NaClO2  سدیم کلرو – NaClO سدیم هیپو کلرو.

    وجود آب در شبکه بعضی از نمکها نمکهای متبلور را ایجاد می کند. برای بدست آوردن تعداد مولکولهای آب در یک نمک ابتدا تعداد مولهای نمک خشک را بدست می آوریم سپس تعداد مول آب خارج شده را حساب می کنیم و از تناسب تعداد مولکول را بدست می آوریم.

mohamad بازدید : 622 شنبه 09 خرداد 1394 نظرات (0)

                *به نام خدا*                      مهدی محمدیاری ملاصدرا 08                            نامگذاری ترکیبات آلی                     

در اين مقاله سعي دارم تا به طور مختصر و مفيد نام گذاري ترکيبات آلي را ذکر کنم تا براي افرادي که مي خواهند اين مطلب را بياموزند يا در اين مورد اشکال هايي دارند قابل استفاده باشد. سعي دارم تا کم تر وارد مباحث ديگر شوم ولي در بعضي موارد براي توضيح بهتر مجبور به بررسي يک سري مفاهيم مرتبط خواهم بود

 

مفاهيم مقدماتي:

1-     تقسيم بندي ترکيبات آلي: به ترکيباتي عناصر اصلي ساختمان آنها را کربن و هيدروژن تشکيل مي دهند، ترکيبات آلي مي گويند. در ساختمان ترکيبات آلي گاهي علاوه بر کربن و هيدروژن، عناصري مانند اکسيژن، نيتروژن، گوگرد، فسفر و ... نيز يافت مي شوند. ترکيبات آلي را از يک نگاه مي توان به دو گروه حلقوي ها (آروماتيک ها) که خانواده بنزن هستند و غير حلقوي ها (آليفاتيک ها) که شامل آلکانها، آلکن ها، آلکين ها و سيکلو آلکانها هستند، تقسيم بندي نمود. از نگاه ديگر اين ترکيبات را به چهار گروه هيدروکربنهاي ساده، اکسيژن دار، نيتروژن دار و اکسيژن و نيتروژن دار تقسيم مي کنند.

2-     انواع کربن : اگر کربني با يک کربن در اطراف خود پيوند داشته باشد، آنرا کربن نوع اول، اگر به دو کربن متصل باشد، نوع دوم و اگر به سه کربن متصل باشد آنرا نوع سوم و درنهايت اگر يک کربن هر چهار پيوند خود را با چهار کربن تشکيل داده باشد، آنرا کربن نوع چهارم مي نامند.

3-     هيدروکربن بدون شاخه: هيدروکربني است که در آن هيچ اتم کربني يافت نمي شود که به بيش از دو کربن متصل باشد. يعني در ساختمان اين هيدروکربن ها، کربن نوع دوم به بالا نداريم.

مثال:CH3                        CH3-CH2-CH2-CH2-CH2-CH2-CH2-

4-     هيدرو کربن شاخه دار: هيدروکربني است که در آن حداقل يک اتم کربن به بيش از دو اتم کربن ديگر متصل است. يعني در ساختمان اين نوع هيدروکربن حداقل يک اتم کربن نوع سوم يا چهارم وجود دارد.

5-     همولوگ: ترکيباتي که اختلاف ساختار آنها فقط در تعداد - CH2 -  آنهاست. 

- نام گذاري آلکان ها:

آلکانها، هيدروکربنهاي سير شده اي هستند که تمايلي به واکنش هاي افزايشي ندارند. هيبريداسيون اتمهاي کربن در ساختار الکانها sp3 مي باشد. نام ديگر اين ترکيبات پارافين ها مي باشد. فرمول عمومي اين ترکيبات عبارتست از CnH2n+2 ، يعني اگر آلکان ما يک کربنه باشد، 4 عدد هيدروژن و اگر 2 کربنه باشد، 6 عدد هيدروژن در ساختمان آن وجود دارد. و به همين ترتيب الي آخر. بنابر اين اختلاف آلکانها در تعداد - CH2 -  هاي آنها مي باشد و مي توان نتيجه گرفت که آلکانها همولوگ همديگر هستند.

1-   روش آيوپاک:

روش آيوپاک روش جهاني نامگذاري ترکيبات الي مي باشد که جايگزين نامگذاري هاي قديمي گرديده است. در اين نامگذاري تعداد اتم کربن در زنجير اصلي مهمترين قسمت نام را تشکيل مي دهد. تعداد اتم هاي کربن را با لفظ هاي ويژه زير تعيين مي کنيم:

 

1 : مِت   2: اِت   3 : پروپ   4 : بُوت   5: پّنت   6: هِگز   7: هِپت   8: اُکت   9: نون   10: دِک

 

در نام گذاري آلکان ها تعداد کربن هاي زنجير اصلي تعيين کننده نام آلکان است به اين ترتيب که تعداد کربن ها را شمرده لفظ ويژه آنرا بدست آورده و به انتهاي لفظ ويژه آن يک لفظ " ان" اضافه مي کنيم. به عنوان مثال:

CH3                        CH3-CH2-CH2-CH2-CH2-CH2-CH2-

هيدروکربن فوق داراي هشت کربن است و لفظ ويژه مربوط به مي شود "اکت" که با افزودن يک "ان"   تبديل مي شود به اکتان.

 - راديکال: اگر از ساختمان يک هيدروکربن، اتم هيدروژن را بطور متقارن جدا کنيم، بطوريکه کربن مورد نظر داراي يک اربيتال نيمه پر گردد، به ترکيب بدست آمده راديکال مي گوييم. به راديکال آلکانها، آلکيل مي گويند و در نامگذاري آنها لفظ "ان" انتهاي نام آلکان مورد نظر را به "ايل" تبديل مي نمايند.

CH4 à CH3. + H.

به نام آلکيل هاي زير و محل قرار گرفتن (.) توجه کنيد.

رديف

فرمول آلکان

نام آلکان

فرمول آلکيل

نام آلکيل

1

CH4

متان

CH3.

متيل

2

C2H6

اتان

C2H5.

اتيل

3

C3H8

پروپان

CH3-CH2-CH2.

پروپيل

4

C3H8

پروپان

CH3-CH.-CH3

ايزو پروپيل

5

C4H10

بوتان

CH3-CH2-CH2-CH2.

بوتيل

6

C4H10

بوتان

CH3-CH2-CH.-CH3

بوتيل-S

7

C4H10

بوتان

 CH3-CH(CH3)-CH2.

ايزو بوتيل

8

C4H10

بوتان

 CH3-C.(CH3)-CH3

بوتيل -t

 چنان چه آلکان ما بدون شاخه باشد. از نامگذاري ذکر شده در بالا يعني لفظ ويژه + ان استفاده مي کنيم. اگر آلکان ما شاخه دار بود روش زير را براي نامگذاري آلکان مورد نظر به کار مي بريم:

1-     بلند ترين زنجير ممکن را به عنوان زنجير اصلي انتخاب مي کنيم. دقت نماييد که اين زنجير بايد با يک کربن نوع اول آغاز شده و به يک کربن نوع اول ختم گردد.

2-     ساختار کاملاً گسترده ماده را رسم مي کنيم به گونه اي که هيچ کربني در آن انديس بيش از يک نداشته باشد.

3-     کربنهايي که در اين زنجير اصلي قرار نداند و بلکه با کربنهاي آن اتصال دارند را به عنوان شاخه هاي در نظر مي گيريم.

4-     زنجير اصلي را از سمت نزديکتر به تراکم بيشتر شماره گذاري مي کنيم. توجه کنيد اين شماره گذاري بايستي به صورتي باشد که مجموع شماره هاي شاخه ها کمترين رقم را داشته باشد.

5-     نا م آلکان را به شکل زير بدست مي آوريم:

 

" شماره کربن محل اتصال شاخه + نام آلکيلي شاخه + نام زنجير اصلي بصورت آلکاني"

 تذکر 1 : اگر بر روي زنجير اصلي دو يا چند شاخه يکسان مشاهده شود، بعد از ذکر شماره محل هاي اتصال شاخه ها، تعداد آنها را با لفظ هاي " دي، تري، تترا و ..." معين کرده و قبل از نام شاخه ذکر مي کنيم.

 تذکر 2: اگر بر روي شاخه اصلي چند گونه متفاوت آلکيل داشته باشيم، نام شاخه ها را به ترتيب حروف الفباي يوناني ذکر مي کنيم:

اتيل( Ethyl)، ايزو پروپيل(Iso propyle )، متيل ((Methyl ، پروپيل (Propyle)

مثال:

 نام گذاري ترکيبات آلي ( آلکان ها)-درس شيمي

     ۳- اتيل - ۴- متيل هگزان

 تذکر 3: دقت نماييد که پيشوندهاي "-s"، "-n"، "-t" و ...  يا تعداد شاخه ها با الفاظ " دي، تري، تترا و ..." در تقدم الفبايي منظور نمي شوند.

 تذکر 4: اگر بعد از انتخاب زنجير اصلي فاصله شاخه ها  تا دو سر زنجير يکسان و مجموع اعداد نيز برابر باشد، از سمت نزديکتر به شاخه داراي تقدم الفبايي شماره گذاري را انجام مي دهيم.

مثال:

 نام گذاري ترکيبات آلي ( آلکان ها)-درس شيمي

 

    ۳- اتيل - ۴- متيل هگزان

تذکر 5: اگر تغيير محل شاخه در نامگذاري تأثيري نداشت، از ذکر شماره محل شاخه خودداري مي کنيم.

تذکر 6: اگر آلکاني داراي کربني باشد که به جاي هيدروژن عنصر يا گروه ديگري با آن پيوند داشته باشد، آنرا مشتق آلکان ناميده و در نامگذاري ترکيب با عنصر مربوطه مانند يک شاخه رفتار مي کنيم. فقط در انتهاي نام عنصر مربوطه لفظ " و " اضافه مي کنيم.

مانند: نيترو NO2- کلرو - فلوئورو - برمو -يدو و....

2-   روش قديمي يا بازاري:

اين روش بسيار ناقص و محدود بوده و از قاعده خاصي پيروي در تمام زمينه ها پيروي نمي کند. از اين روش در محافل علمي بسيار کم استفاده شده و فقط به طور محدود در بازارها مورد استفاده قرار مي گيرد ولي آشنايي با آن خالي از لطف نيست.

1-     در آلکانهاي بدون شاخه نام آلکان با توجه به تعداد کربن ذکر مي گردد. مانند بوتان، پنتان و ...

2-     در آلکانهاي شاخه دار از روش زير استفاده مي کنيم:

پيشوند مناسب + نام آلکان با توجه به تعداد کل کربن

اگر يک شاخه متيل روي کربن دوم قرار بگيرد از پيشوند "ايزو" و اگر دو شاخه متيل روي کربن دوم قرار بگيرد از پيشوند "نئو" استفاده مي کنيم.

 

3-     براي مشتقات مونو هالوژنه آلکانها داريم:

"  نام راديکال متصل به هالوژن + نام هالوژن + ايد "

با توجه به روش فوق براي نامگذاري مشتقات مونو هالوژنه آلکانها آنها را، " آلکيل هاليد " نيز مي نامند.

 

mohamad بازدید : 2044 یکشنبه 30 آذر 1393 نظرات (0)

                   به نام خدا      

    مهدی محمدیار

عنوان:عناصر8تایی                                                        

      اگر تمام اتم ها در طبیعت به حالت آزاد بودند شیمی نمی توانست خیلی جالب توجه باشد. وجود میلیونها ترکیب شیمیایی نشان می دهد که بیش تر اتم ها در طبیعت به حالت آزاد یافت نمی شوند.
اتم ها به جای اینکه به صورت منفرد باقی بمانند ، تمایل دارند به یکدیگر بپیوندند و به هم پیوستن اتم ها با تشکیل پیوند های شیمیایی صورت می گیرد.
تشکل پیوند بین اتم ها باتغییر آرایش الکترونی آنها همراه است. و این الکترون های ظرفیت اتم ها هستند که سبب تشکیل پیوند های شیمیایی می شوند.
پیوندهای شیمیایی انواع مختلف دارند که مهم ترین آنها عبارتند از:
پیوند یونی،پیوند کووالانسی وپیوند فلزی. در این بخش با پیوند یونی آشنا می شویم.


                                                          

mohamad بازدید : 1787 دوشنبه 26 آبان 1393 نظرات (0)

  به نام خدا   

 مهدی محمدیاری

ملاصدرا 1 کلاس 11  

آقای معاف    

     موضوع:آرایش الکترونی

آرایش الکترونی نحوه چنیش الکترون‌ها در اوربیتال‌ها اطراف هسته اتم را نشان می‌دهد. و شیوه پر شدن زیر لایه‌ها به ترتیب زیر است:

۱s ۲s ۲p ۳s ۳p ۴s ۳d ۴p ۵s ۴d ۵p ۶s ۴f ۵d ۶p ۷s ۵f ۶d ۷p

در s حدأکثر ۲ الکترون در p حدأکثر ۶ الکترون در d حدأکثر ۱۰ و در f حدأکثر ۱۴ الکترون قرار می‌گیرد. به طور مثال آرایش الکترونی گالیوم که ۳۱ الکترون دارد به صورت زیر نوشته می‌شود:

۱s(۲)۲s(۲)۲p(۶)۳s(۲)۳p(۶)۴s(۲)۳d(۱۰)۴p(۱)

که البته به صورت مرتب شده و به شکل زیر نوشته می‌شود

۱s(۲)۲s(۲)۲p(۶)۳s(۲)۳p(۶)۳D(۱۰)۴s(۲)۴p(۱)

اصل آفبا (به آلمانی: Aufbau)، به معنی ساختن یکی از اصول آرایش الکترونی است که می‌گوید:

mohamad بازدید : 281 پنجشنبه 26 تیر 1393 نظرات (0)

                به نام خدا                    مهدی محمدیاری ملاصدرا 06                  آقای سلامی                                 عنوان <لایه اوزون>                          

مقدمه

لایه اوزون قسمتی از استراتوسفر است که حاوی گاز طبیعی اوزون O3 است. اوزون توانایی جالب توجهی در جذب برخی از فرکانسهای اشعه فرابنفش دارد. لایه اوزون زیاد چگال نیست. اگر آنرا در تروپوسفر متراکم شود ضخامت آن تنها در حد چند میلیمتر می‌شود. اوزون در جو زمین عموما توسط شکستن مولکول دو اتمی اکسیژن به دو اتم تنها بوسیله نور فرابنفش بوجود می‌آید. اکسیژن تک اتمی با اکسیژن نشکسته ترکیب می‌شود و اوزون را بوجود می‌آورند. مولکول اوزون ناپایدار است و هنگامی که نور فرابنفش به آن برخورد می‌کند به یک مولکول اکسیژن و یک اکسیژن اتمی شکسته می‌شود. به این فرآیند مداوم واکنش زنجیره‌ای اوزون اکسیژن نامیده می‌شود. بدین ترتیب لایه اوزون در استراتوسفر بوجود می‌آید. 



img/daneshnameh_up/a/a9/p3-4.jpg

 

mohamad بازدید : 101 پنجشنبه 26 تیر 1393 نظرات (0)

                به نام خدا                     مهدی محمدیاری ملاصدرا 06                 آقای سلامی                                 عنوان<شیمی سبز>                            

شیمی سبز

 

شیمی سبز

 

شیمی سبز: پيش‌گيري از آلودگي در سطح مولكولي
شیمی نقشي بنيادي در پيشرفت تمدن آدمي داشته و جايگاه آن در اقتصاد، سياست و زندگي‌روزمره روز به روز پر رنگ‌تر شده است. با اين همه، شيمي طي روند پيشرفت خود، كه همواره با سود رساندن به آدمي همراه بوده، آسيب‌هاي چشم‌گيري نيز به سلامت آدمي و محيط زيست وارد كرده است.

 

شيميدان‌ها طي سال‌ها كوشش و پژوهش، مواد خامي را از طبيعت برداشت كرده‌اند، كه با سلامت آدمي و شرايط محيط زيست سازگاري بسيار دارند، و آن‌ها را به موادي دگرگونه كرده‌اند كه سلامت آدمي و محيط زيست را به چالش كشيده‌اند.هم‌چنين، اين مواد به‌سادگي به چرخه‌ي طبيعي مواد باز نمي‌گردند و سال‌هاي زيادي به صورت زباله‌هاي بسيار آسيب‌رسان و هميشگي در طبيعت مي‌ماند.

mohamad بازدید : 127 دوشنبه 29 اردیبهشت 1393 نظرات (0)

               به نام خدا        

        مهدی محمدیاری ملاصدرا06      

   آقای سلامی          

                موضوع. شیمی آلی          

             شیمی آلی زیر مجموعه ای از دانش شیمی است که درباره ترکیبات کربن یا مواد آلیسخن می‌گوید، عنصر اصلی که با کربن ترکیبات آلی را تشکیل می دهند، هیدروژن می باشد. در گذشته به موادی که ریشه گیاهی یا حیوانی داشتند، مواد آلی می گفتند اما امروزه مواد آلی را می توان از طریق روش های صنعتی و آزمایشگاهی و به کمک مواد معدنی نیز سنتز کرد. موادی که از منابع آلی بدست می آیند، در یک ویژگی مشترک هستند و آن اشتراک در دارا بودن عنصر کربن است. دو منبع بزرگ مواد آلی که از آنها مواد آلی با ترکیبات ساده، تأمین می شوند، نفت و زغال سنگ هستند، این دو ماده فسیلیدر مفهوم قدیمی آلی بوده و حاصل تجزیه جانوران و گیاهان هستند.

mohamad بازدید : 580 دوشنبه 29 اردیبهشت 1393 نظرات (1)

               به نام خدا  

               اشکبوس اقبال  

 ملاصدرا06        

  آقای سلامی    

                          موضوع. آلودگی آب توسط کاتیون های سنگین                                    


ناخالصي هاي موجود در آب : 

آب خالص در طبيعت به دليل ويژگيهاي حلاليت بالاي آن ، وجود ندارد و داراي ناخالصي هاي گوناگون مي باشد ناخالصي هاي آب را به سه دسته كلي مواد جامد محلول ، مواد جامد معلق و كلوئيدي و گازها دسته بندي مي نمايند. 
مواد غير محلول و معلق : 
ذرات ريز و درشت مواد غير محلول و معلق در آب داراي اهميت بسيار متنوع مي باشند اين مواد معلق سبب كدورت آب مي شوند. برخي از اين ذرات كه درشت تر هستند داراي قابليت ته نشيني مي باشند و با حذف آنها آب شفاف تر مي گردد و برخي ديگر از اين ذرات معلق قابليت ته نشيني بسيار كمي دارند و براي ته نشيني نياز به زمان طولاني دارند و يا اينكه به طور كلي غير قابل ته نشيني هستند برخي از اين مواد معلق عبارتند از : 

mohamad بازدید : 493 دوشنبه 29 اردیبهشت 1393 نظرات (0)

               به نام خدا

                اشکبوس اقبال

 ملاصدرا  06  

         آقای سلامی

 

                            موضوع.آلاینده های اسیدی            


img/daneshnameh_up/4/49/acidrn1.jpg

 

دید کلی

در چند دهه اخیر میزان اسیدیته آب باران ، در بسیاری از نقاط کره زمین افزایش یافته و به همین خاطر اصطلاح باران اسیدی رایج شده است. برای شناخت این پدیده سوالات زیادی مطرح گردیده است که به عنوان مثال می‌توان به این موارد اشاره کرد: چه عناصری باعث تغییر طبیعی باران می‌شوند؟ منشا این عناصر چیست؟ این پدیده در کجا رخ می‌دهد؟

معمولا نزولات جوی به علت حل شدن دی‌اکسید کربن هوا در آن و تشکیل اسید کربنیک بطور ملایم اسیدی هستند و PH باران طبیعی آلوده نشده حدود 5.6 می‌باشد. پس نزولاتی که به مقدار ملاحظه‌ای قدرت اسیدی بیشتری داشته باشند و PH آنها کمتر از 5 باشد، باران اسیدی تلقی می‌شوند.

mohamad بازدید : 243 دوشنبه 29 اردیبهشت 1393 نظرات (0)

                به نام خدا  

               اشکبوس اقبال        ملاصدرا 06  

   آقای سلامی  

 

                       موضوع.فیبر های نوری   

             فیبر نوری یا تار نوری (به انگلیسی: Optical Fiber) رشتهٔ باریک و بلندی از یک مادّهٔ شفاف مثل شیشه یا پلاستیک است که می‌تواند نوری را که از یک سرش به آن وارد شده، از سر دیگر خارج کند. فیبر نوری داری پهنای باند بسیار بالاتر از کابل‌های معمولی می‌باشد، با فیبر نوری می‌توان داده‌های تصویر، صوت و داده‌های دیگر را به راحتی با پهنای باند بالا تا ۱۰ گیگابیت بر ثانیه و بالاتر انتقال داد.[۱] امروزه مخابرات فیبر نوری، به دلیل پهنای باند وسیعتر در مقایسه با کابلهای مسی، و تاخیر کمتر در مقایسه با مخابرات ماهواره ای از مهمترین ابزار انتقال اطلاعات محسوب می‌شود.

 

mohamad بازدید : 1293 پنجشنبه 28 فروردین 1393 نظرات (0)

          به نام  خدا                   مهدی محمدیاری ملاصدرا 06    آقای سلامی                               عنوان. آلیاژ برنج و برنز                

آلیاژ برنز (Bronze Alloy) از ترکیب مس با عناصری همچون قلع ، آلومینیوم ، منگنز و یا فسفر تولید می شود. آلیاژ هایی که اساساً از مس و قلع تشکیل شده ‌اند، برنزهای قلع ‌دار نامیده می‌شوند. از آنجا که به منظور اکسیژن زدایی هنگام ریخته گری، فسفر به این آلیاژها افزوده می‌شود، برنزهای قلع ‌دار با نام تجاری « برنزهای فسفردار » نیز شناخته می‌شوند. این آلیاژها خواص مطلوبی مثل استحکام زیاد، مقاومت به سایش و مقاومت خوبی به خوردگی در آب دریا دارند.

برنزهای مس - قلع کارشده

برنزهای کارشده مس- قلع که 1.25 تا 10% قلع دارند، برنزهای فسفردار نامیده می‌شوند. زیرا این آلیاژها معمولاً تا حدود 0.1% فسفر دارند، که برای بهبود قابلیت ریخته گری و اکسیژن زدایی به آن ها افزوده می‌شود. اگر پس از اکسیژن‌ زدایی مقداری فسفر باقی بماند ترکیب سخت Cu3P تشکیل می‌شود که استحکام و سختی برنز قلع‌ دار را افزایش می‌دهد. برنزهای قلع‌دار کارشده محکم‌ تر از برنج‌ ها هستند، مخصوصاً در شرایط کارسرد شده و مقاومت بیشتری به خوردگی دارند. جدول زیر ترکیب شیمیایی، خواص مکانیکی و کاربردهای خاص آلیاژهای منتخب برنزهای قلع‌ دار را مشخص می‌کند. ریزساختار برنز فسفردار ( 8Sn - %92Cu% ) در شرایط تابکاری شده در شکل رو به رو آمده است و شامل دانه‌ های تبلور مجدد یافته و هم‌ محور محلول جامد α است.

برنزهای مس - قلع ریخته ‌شده

مقدار زیاد قلع، بیشتر از حدود 10%، آلیاژهای مس- قلع را کار ناپذیر می‌کند، ولی آلیاژهای ریختگی که تا 16Sn% داشته باشند برای ساخت قطعات مستحکم یاتاقان و چرخ ‌دنده به‌ کار می‌رود. برای اطمینان از ریخته‌ گری سالم، چرخ‌دنده ها اغلب به روش ریخته گری گریز از مرکز انجام می‌شود. برای یاتاقان ‌ها حدود 10Sn% معمول است، البته برای بهبود شکل پذیری و تناسب سطح یاتاقان مقادیر متغیری سرب اضافه می شود.

    
 

آلیاژ فسفر برنز

ویرایش
 
 
 
 

در جدول زیر ترکیب شیمیایی، خواص مکانیکی و کاربردهای خاص برخی آلیاژهای فسفر برنز ( برنزهای فسفردار ) نشان داده شده است

ترکیب شیمیایی، خواص مکانیکی و کاربرد های خاص برنز های فسفر منتخب
نام و شماره

درصد ترکیب

اسمی

شکل

تجاری

استحکام

کششی

ksi

استحکام

تسلیم

ksi

درصد ازدیاد

طول

در 2 اینچ

درصد مقاومت

به خوردگی

درصد قابلیت

ماشین کاری

مشخصات ساخت و کاربرد های خاص

505

فسفر برنز

1/25E%

98.75 Cu

1.25 Sn

کمی P

F, W

79-40

50-14

48-4

G-E

20

قابلیت کار سرد عالی، قابلیت شکل‌ پذیری گرم خوب، ساخته شده به وسیله پولک‌ زنی، خم شدن، کله‌ زنی و جا زدن، برش.

کاربردها: اتصالات الکتریکی، زهکشی خم‌ شونده، سخت‌ افزار خطوط الکتریکی

510

فسفر برنز

5A%

95.0 Cu

5.0 Sn

کمی P

F, R,

W, T

140-47

80-19

64-2

G-E

20

کارپذیری سرد عالی، ساخته شده به وسیله پولک‌ زنی، خم شدن، دنده‌ سازی غلتکی و آحیدن، برش، استامپ.

کاربردها: دم آهنگری، نیزه، باتون، دیسک‌ های اتصال، میخ پرچی- دیافراگم، اتصالات، واشرهای اتصال، سیم برس، سخت‌ افزار شیمیایی، ماشین‌های نساجی، الکترود های جوشکاری.

511

95.6 Cu

4.2 Sn

0.2 P

F

103-46

80-50

48-2

G-E

20

کار سرد پذیری عالی.

کاربردها:صفحات پل، میله‌‌ های جایگزین‌ شونده، فیوز، دوشاخه برق، فنر، قطعات کلیه برق، سیم بسته‌ بندی، سیم برس، سخت‌افزار شیمیایی، ورق‌ های دقیق، ماشین‌ آلات نساجی، الکترود های جوشکاری.

521

فسفر برنز

8C%

92.0 Cu

8.0 Sn

کمی P

F, R,

W

140-55

80-24

70-2

G-E

20

قابلیت کارسرد خوب برای پولک‌ زنی، کشش عمیق شکل دادن و خم کردن، برش، استامپ.

کاربردها: معمولا برای شرایط کار شدیدتر از مس 510.

524

فسفر برنز

10D%

90.0 Cu

10.0 Sn

کمی P

F, R,

W

147-66

28 تابکاری شده

70-3

G-E

20

قابلیت کار پذیری سرد خوب برای پولک‌ زنی، شکل دادن و خم کردن، برش.

کاربردها: میله‌ها و صفحات سنگین در شرایط فشار شدید، پل و صفحات گسترده و اتصالات، قطعاتی که مستلزم کیفیت فنری خوب هستند، خاصیت ارتجاعی، مقاومت به خستگی، مقاومت به خوردگی و مقاومت به سایش خوب

 

منابع و پیوندها

 
 
 

گرد آوری شده توسط دپارتمان پژوهشی شرکت پاکمن

ویلیام اسمیت ، ترجمه علی اکبر اکرامی و سید مرتضی سید ریحانی ، ساختار ، خواص و کاربرد آلیاژهای مهندسی ، انتشارات علمی دانشگاه صنعتی شریف ، 1382

 
 

ابتدا برنز به آلیاژ مس و قلع (Sn) گفته می‌ شد ولی اکنون به سایر آلیاژهای مس ( که درصد اصلی آن مس است ) مانند آلیاژ مس و آلومینیوم، مس و منگنز و مس و سیلیکون نیز برنز گفته می‌شود.

برنز در 3500 سال قبل از میلاد توسط سومریان به کار گرفته شد. اعتقاد بر این است که احتمالا هنگامی که سنگهای در برگیرنده مس و قلع به عنوان آتشدان استفاده شده بود به طور تصادفی این آلیاژ از مخلوط شدن مذاب این مواد تولید شده است و سپس توسط بشر به دلیل مشخصات فیزیکی متنوع به کار گرفته شد. براساس این نظریه برنز در شمال امریکا کشف نشده است به دلیل اینکه سنگهایی که در برگیرنده مس و قلع باشند در این قاره به ندرت یافت می‌شوند


برنج آلیاژی از مس و فلز روی می‌باشد که نسبت آن‌دو در آلیاژ تعیین کننده نوع برنج با توجه به مورد استفاده آن است.
از این فلز به خاطر کاربردهای خاص و شکل و رنگ آن در جاهای مختلفی استفاده می کنند: مثلاً در دکوراسیون به خاطر رنگ تقریباً طلایی رنگش، در مهمات جنگی، در جاهایی که به اصطکاک کم نیاز باشد (مثل مغزی قفل‌ها)، و مخصوصاً بخاطر خاصیت آکوستیکی در سازهای موسیقی (مثل هورن).

برنج رنگی تقریباً زرد دارد که شبیه به رنگ طلا است. برنج در برابر کدر شدن و لکه‌دار شدن هم مقاومت دارد، یعنی دیرتر اکسایش می یابد.

برنج از مدتها پیش حتی قبل از تاریخ شناخته شده بود؛ در آن زمان که انسان هنوز فلز روی را نمی شناخت با ذوب کردن مس همراه با کالامین (سنگ معدن فلز روی) برنج تولید می کرد.

برنج معمولاً قابلیت چکش‌خواری بیشتری نسبت به مس و روی دارد و تقریباً دمای ذوب آن بین ۹۰۰ تا ۹۴۰ درجه سانتی‌گراد است . البته سختی و نرم بودن آن می تواند با تغییر نسبت مخلوط مس و روی تغیر کند.

مس داخل برنج (از طریق اثر اولیگودینامیک) خاصیت میکروب‌کشی به آن می‌دهد. به‌همین خاطر از برنج به عنوان دستگیره و دیگر فلزات رایج در بیمارستان‌ها استفاده می‌کنند.

امروزه تقریباً ۹۰٪ از فلزات برنج بازیافت می شوند، چون فلز برنج خاصیت مغناطیسی کمی دارد و به راحتی می توان آن را از فلزاتی که معمولاً با آنها مخلوط می شود جدا کرد. بدین ترتیب برنج جدا شده را دوباره بازیافت می کنند.

چگالی متوسط برنج ۸٫۴ گرم بر سانتی‌متر مربع است .

انواع برنج
برنج دریاسالار: شامل ۳۰٪ روی همراه با ۱٪ قلع

برنج آلفا: شامل کمتر از ۳۵٪ روی، که از آن می توان برای کارهایی با فشار بالا، ضربه و سرد استفاده کرد. ساختار کریستالی این نوع برنج FCC است .

برنج بتا: شامل ۴۵٪ تا ۵۰٪ روی که سختی و مقاومت بیشتری نسبت به گرما و فشار و ضربه دارد.

برنج آلفاـبتا: شامل ۳۵٪ تا ۴۵٪ روی مناسب برای گرما

برنج آلومینیومی: که شامل آلومینیوم است و مقاومت زیادی در برابر خوردگی دارد که از آن در ساخت سکه های اروپایی استفاده می کنند .

برنج آرسنیکی: شامل آرسنیک. آلومینیوم است که در ساخت دیگ‌های بخار کاربرد دارد .

برنج فشنگی: شامل ۳۰٪ روی

برنج معمولی: شامل ۳۷٪ روی، ارزان و مناسب برای کارهای بدون گرما (سرد)

برنج عالی: شامل ۳۵٪ روی و ۶۵٪ مس، با قابلیت انعطاف پذیری بالا، استفاده شده در ساخت فنر و پیچ ها.

برنج سربی: همان برنج آلفاـبتا همراه با مقداری سرب است.

برنج پست: شامل ۲۰٪ روی است، با رنگ زرد نزدیک به طلا

برنج دریایی: شبیه به برنج دربا سالار با ۴۰٪ روی و ۱٪ قلع

برنج سفید: شامل بیش از ۵۰٪ روی ، بسیار شکننده

برنج طلایی: که نرم ترین فلز برنج است با ۹۵٪ مس و ۵٪ روی که در ساخت مهمات جنگی کاربرد دارد.

منبع: سایت ویکی پدیا

برنز نیز آلیاژ مس و قلع است که مقدار قلع تا 20% می تواند در آلیاژ وجود داشته باشد. اگر چه برنزها سخت‌تر از مس می باشند ولی قابلیت ماشین‌کاری و ریخته شدن خیلی خوبی دارند. به علت مقاومت زیاد برنز در مقابل خوردگی از آن‌ها برای ساختن شیر و لوله‌های آب و گاز استفاده می‌شود. برنزها به‌علت داشتن ضریب اصطکاک کم و مقاومت در برابر سایش در ساختن یاتاقآن‌ها، چرخ‌دنده‌ها و دنده‌ها نیز بکار می‌روند.
البته قابل ذکر است که در آلیاژهایی مانند برنج و برنز، مس اکسید نشده است که حالا بخواهیم با احیا کردن، مس را جدا کنیم. زیرا در طی آلیاژ شدن، دو فلز را گداخته و به حالت مذاب در آمده سپس در حالت گداخته شده با هم مخلوط می شوند و تغییری در عدد اکسیداسیون ایجاد نمی شود. یعنی به حالت یون در نمی آیند و به همان صورت اتمی هستند.

اما متداول‌ترین حالات اکسیداسیون مس شامل حالت مربوط به مس یک طرفیتی cuprous، 1+Cu و حالتcupric ،2+Cu می‌‌باشد.

اکسیداسیون مس:

Cu(s ) + O2(g ) --> 2 CuO(s )

احیا (کاهش) مس:

CuO(s ) + H2(g ) --> Cu(s ) + H2O(g )

متداولترین احیا مس، با استفاده از هیدروژن می باشد. اما با استفاده از کزبن و کربن مونوکسید نیز فرآیند احیا انجام می شود.

 

 

mohamad بازدید : 498 پنجشنبه 28 فروردین 1393 نظرات (0)

                  به نام خدا                 مهدی محمدیاری ملاصدرا 06          آقای سلامی                               عنوان. فیبر های نوری        

فیبر نوری

 

دسته‌ای از تارهای نوری

فیبر نوری یا تار نوری (به انگلیسی: Optical Fiber) رشتهٔ باریک و بلندی از یک مادّهٔ شفاف مثل شیشه یا پلاستیک است که می‌تواند نوری را که از یک سرش به آن وارد شده، از سر دیگر خارج کند. فیبر نوری داری پهنای باند بسیار بالاتر از کابل‌های معمولی می‌باشد، با فیبر نوری می‌توان داده‌های تصویر، صوت و داده‌های دیگر را به راحتی با پهنای باند بالا تا ۱۰ گیگابیت بر ثانیه و بالاتر انتقال داد.[۱] امروزه مخابرات فیبر نوری، به دلیل پهنای باند وسیعتر در مقایسه با کابلهای مسی، و تاخیر کمتر در مقایسه با مخابرات ماهواره ای از مهمترین ابزار انتقال اطلاعات محسوب می‌شود.

تاریخچهٔ ساخت فیبر نوری

رونمایی از مقاله طبعیت در سال ۱۸۸۴ توسط ژان دانیل کلادون

اولین کسانی که در قرون اخیر به فکر استفاده از نور برای انتقال اطلاعات افتادند، انتشار نور را در جو زمین تجربه کردند. اما وجود موانع مختلف نظیر گرد و خاک، دود، برف، باران، مه و... انتشار اطلاعات نوری در جو را با مشکل مواجه ساخت. بعدها استفاده از لوله و کانال برای هدایت نور مطرح گردید. نور در داخل این کانالها بوسیله آینه‌ها و عدسی‌ها هدایت می‌شد، اما از آنجا که تنظیم این آینه‌ها و عدسی‌ها کار بسیار مشکلی بود این کار نیز غیر عملی تشخیص داده شد و مردود ماند.
.[۲] شاید اولین تلاش در سیر تکاملی سیستم ارتباط نوری به وسیله الکساندر گراهام بل صورت گرفت که در سال ۱۸۸۰، درست ۴ سال پس از اختراع تلفن، اختراع تلفن نوری (فوتوفون) یا سیستمی که صدا را تا فواصل چندین صد متر منتقل می¬کرد، به ثبت رساند. تلفن نوری بر مبنای مدوله کردن نور خورشید بازتابیده با به ارتعاش در آوردن آینه ای کار می کرد. گیرنده یک فتوسل بود. در این روش نور در هوا منتشر می¬ شد و بنابراین امکان انتقال اطلاعات تا بیش از ۲۰۰ متر میسر نبود. به همین دلیل، اگرچه دستگاه بل ظاهراً کار می کرد اما از موفقیت تجاری برخوردار نبود.
ایده استفاده از انکسار (شکست) برای هدایت نور (که اساس فیبرهای نوری امروزی است) برای اولین بار در سال ۱۸۴۰ توسط Daniel Colladon و Jacques Babinet در پاریس پیشنهاد شد. همچنین John Tyndall در سال ۱۸۷۰ در کتاب خود ویژگی بازتاب کلی را شرح داد: «وقتی نور از هوا وارد آب می شود به سمت خط عمود بر سطح خم می‌شود و وقتی از آب وارد هوا می شود از خط عمود دور می شود. اگر زاویه ی پرتو نور با خط عمود در تابش از داخل آب بزرگتر از ۴۸ درجه شود هیچ نوری از آب خارج نمی‌شود در واقع نور به طور کامل از سطح آب منعکس می شود. زاویه ای که انعکاس کلی آغاز می شود را زاویه بحرانی می نامیم».
[۳]

کاکو و کوکهام انگلیسی برای اولین بار استفاده از شیشه را بعنوان محیط انتشار مطرح ساختند. آنان مبنای کار خود را بر آن گذاشتند که به سرعتی حدود ۱۰۰ مگابیت بر ثانیه و بیشتر بر روی محیط‌های انتشار شیشه دست یابند. این سرعت انتقال با تضعیف زیاد انرژی همراه بود. این دو محقق انگلیسی، کاهش انرژی را تا آنجا می‌پذیرفتند که کمتر از ۲۰ دسی بل نباشد. اگر چه آنان در رسیدن به هدف خود ناکام ماندند، اما شرکت آمریکائی (کورنینگ گلس) به این هدف دست یافت. در اوایل سال ۱۹۶۰ میلادی با اختراع اشعه لیزر ارتباطات فیبرنوری ممکن گردید. در سال ۱۹۶۶ میلادی، دانشمندان در این نظریه که نور در الیاف شیشه‌ای هدایت می‌شود پیشرفت کردند که حاصل آن از کابلهای معمولی بسیار سودمندتر بود. چرا که فیبرنوری بسیار سبکتر و ارزانتر از کابل مسی است و در عین حال ظرفیت انتقالی تا چندین هزار برابر کابل مسی دارد.

توسعه فناوری فیبرنوری از سال ۱۹۸۰ میلادی به بعد باعث شد که همواره مخابرات نوری بعنوان یک انتخاب مناسب مطرح باشد. تا سال ۱۹۸۵ میلادی در دنیا نزدیک به ۲ میلیون کیلومتر کابل نوری نصب شده و مورد بهره برداری قرار گرفته‌است.

از فیبر نوری (معمولا از جنس [[سیلیسیم دی‌اکسید]]) برای انتقال داده‌ها توسط نور لیزر استفاده میشود. یک کابل فیبر نوری که کمتر از یک اینچ قطر دارد از مجموعه ای از این فیبرها تشکیل شده و می‌تواند صدها هزار مکالمهٔ صوتی را حمل کند. فیبرهای نوری تجاری ظرفیت ۲٫۵ گیگابایت در ثانیه تا ۱۰ گیگابایت در ثانیه را فراهم می‌سازند. فیبر نوری از چندین لایه ساخته می‌شود. درونی‌ترین لایه را هسته می‌نامند. هسته شامل یک تار کاملاً بازتاب کننده از شیشه خالص (معمولاً) است. هسته در بعضی از کابل‌ها از پلاستیک کا ملاً بازتابنده ساخته می‌شود، که هزینه ساخت را پایین می‌آورد. با این حال، یک هسته پلاستیکی معمولاً کیفیت شیشه را ندارد و بیشتر برای حمل داده‌ها در فواصل کوتاه به کار می‌رود. حول هسته بخش پوسته قرار دارد، که از شیشه یا پلاستیک ساخته می‌شود. هسته و پوسته به همراه هم یک رابط بازتابنده را تشکیل می‌دهند که با عث می‌شود که نور در هسته تا بیده شود تا از سطحی به طرف مرکز هسته باز تابیده شود که در آن دو ماده به هم می‌رسند. این عمل بازتاب نور به مرکز هسته را (بازتاب داخلی کلی) می‌نامند.

فیبر نوری

در نوع مرسوم فیبر نوری قطر هسته و پوسته با هم حدود ۱۲۵ میکرون است (هر میکرون معادل یک میلیونیم متر است)، که در حدود اندازه یک تار موی انسان است. بسته به سازنده، حول پوسته چند لایه محافظ، شامل یک پوشش معمولا از جنس پلاستیک قرار می‌گیرد.

یک پوشش محافظ پلاستکی سخت لایه بیرونی را تشکیل می‌دهد. این لایه کل کابل را در خود نگه می‌دارد، که می‌تواند صدها فیبر نوری مختلف را در بر بگیرد. قطر یک کابل نمونه کمتر از یک اینچ است.

از لحاظ کلی دو نوع فیبر وجود دارد: تک حالتی و چند حالتی. فیبر تک حالتی یک سیگنال نوری را در هر زمان انتشار می‌دهد، در حالی که فیبر چند حالتی می‌تواند صدها حالت نور را به طور هم‌زمان انتقال بدهد. (ویراستار: فواد مزرعه)

== سیستم‌های مخابرات فیبر نوری ==*

کابل زیر دریایی فیبر نوری

گسترش ارتباطات راه دور و راحتی انتقال اطلاعات از طریق سیستم‌های انتقال و مخابرات فیبر نوری یکی از پر اهمیت ترین موارد مورد بحث در جهان امروز است. سرعت دقت و تسهیل از مهم‌ترین ویژگی‌های مخابرات فیبر نوری می‌باشد. یکی از پر اهمیت‌ترین موارد استفاده از مخابرات فیبر نوری آسانی انتقال در فرستادن سیگنال‌های حامل اطلاعات دیجیتالی است که قابلیت تقسیم بندی در حوزه زمانی را دارا می‌باشد. این به این معنی است که مخابرات دیجیتال تامین کننده پتانسیل کافی برای استفاده از امکانات مخابره اطلاعات در پکیج‌های کوچک انتقال در حوزه زمانی است. برای مثال عملکرد مخابرات فیبر نوری با توانایی ۲۰ مگا هرتز با داشتن پهنای باند ۲۰ کیلو هرتز دارای گنجایش اطلاعاتی ۰٫۱٪ می‌باشد.

در سال ۱۸۸۰ میلادی الکساندر گراهام بل ۴ سال بعد از اختراع تلفن موفق به اخذ امتیاز نامه خود در زمینه مخابرات امواج نوری برای دستگاه خود با عنوان فوتو تلفن گردید. در ۱۵ سال اخیر با پیشرفت لیزر به عنوان یک منبع نور بسیار قدرتمند و خطوط انتقال فیبرهای نوری فاکتورهای جدیدی از تکنولوژی و تجارت بهتر را برای انسان به ارمغان آورده‌است. مخابرات فیبر نوری ابتدا به عنوان یک مخابرات از راه دور قرار دادی تلقی می‌شد که در آن امواج نوری به عنوان حامل یک یا چند واسطه انتقال استفاده می‌شد. با وجود آنکه امواج نوری حامل سیگنالهای آنالوگ بودند اما سیگنالهای نوری همچنان به عنوان سیستم مخابرات دیجیتال بدون تغییر باقی‌مانده‌است. از دلایل این امر می‌توان به موارد زیر اشاره کرد: ۱)تکنیکهای مخابرات در سیستم‌های جدید مورد استفاده قرار می‌گرفت. ۲)سیستم‌های جدید با بالاترین تکنولوژی برای داشتن بیشترین گنجایش کارآمدی سرعت و دقت طراحی شده بود. ۳)انتقال به کمک خطوط نوری امکان استفاده از تکنیک‌های دیجیتال را فراهم می‌ساخت. این مطلب نیاز انسان را به دسترسی به مخابره اطلاعات رابه صورت بیت به بیت پاسخگو بود.

  • توانایی پردازش اطلاعات در حجم وسیع: از آنجایی که مخابرات فیبر نوری دارای کارایی بالاتری نسبت به سیم‌های مسی سنتی هستند بشر امروزی تمایل چندانی برای پیروی از سنت دیرینه خود ندارد و توانایی پردازش حجم وسیعی از اطلاعات در مخابره فیبر نوری او را مجذوب و شیفته خود ساخته‌است.
  • آزادی از نویزهای الکتریکی: بافت یک فیبر نوری از جنس پلاستیک یا شییشه به دلیل رسانندگی انتخاب می‌شود. در نتیجه یک حامل موج نوری می‌تواند از پتانسیل موثر میدان‌های الکتریکی در امان باشد. از قابلیت‌های مهم این نوع مخابرات می‌توان به امکان عبور کابل حامل موج نوری از میان یک میدان الکترومغناطیسی قوی اشاره کرد که سیگنالهای نام برده بدون آلودگی از پارازیت‌های الکتریکی و یا سیگنالهای مداخله گر به حد اکثر کارایی خود خواهند رسید.

کاربردهای فیبر نوری

  1. کاربرد در مخابرات: یکی از مرسوم ترین کاربردهای فیبر نوری انتقال اطلاعات توسط نور لیزر است.
  2. کاربرد در حسگرها: استفاده از حسگرهای فیبر نوری برای اندازه‌گیری کمیت‌های فیزیکی مانند جریان الکتریکی، میدان مغناطیسی، فشار، حرارت، جابجایی، آلودگی آب‌های دریا، سطح مایعات، تشعشعات پرتوهای گاما و ایکس در سال‌های اخیر شروع شده‌است. در این نوع حسگرها، از فیبر نوری به عنوان عنصر اصلی حسگر بهره‌گیری می‌شود بدین ترتیب که ویژگی‌های فیبر تحت میدان کمیت مورد اندازه‌گیری تغییر یافته و با اندازه شدت کمیت تأثیرپذیر می‌شود.
  3. کاربردهای نظامی: فیبر نوری کاربردهای بی‌شماری در صنایع دفاع دارد که از آن جمله می‌توان برقراری ارتباط و کنترل با آنتن رادار، کنترل و هدایت موشک‌ها، ارتباط زیردریاییها (هیدروفون) را نام برد.
  4. کاربردهای پزشکی: فیبرنوری در تشخیص بیماری‌ها و آزمایشهای گوناگون در پزشکی کاربرد فراوان دارد که از آن جمله می‌توان دُزیمتری غدد سرطانی، شناسایی نارسایی‌های داخلی بدن، جراحی لیزری، استفاده در دندانپزشکی و اندازه‌گیری مایعات و خون نام برد. همچنین تارهای نوری در دستگاه‌هایی به نام درون بین یا آندوسکوپ استفاده می‌شود تا به درون نای، مری، روده و مثانه فرستاده شود و درون بدن انسان به طور مستقیم قابل مشاهده باشد.
  5. کاربرد فیبرنوری در روشنابی: از جمله کاربردهای فیبر نوری که در اواخر قرن بیستم به عنوان یک فناوری روشنایی متداول شده و در چند سال قرن اخیر توسعه و رشد فراوانی پیدا کرده‌است کاربرد آن در سیستم‌های روشنایی است. در این فناوری نور از منبع نوری که می‌تواند نور مصنوعی (نورلامپهای الکتریکی) و یا نور طبیعی (نور خورشید) باشد وارد فیبر نوری شده و از این طریق به محل مصرف منتقل می‌شود. به این ترتیب نور به هر نقطه‌ای که در جهت تابش مستقیم آن نمی‌باشد منتقل می‌شود. امتیاز این نور که موجبات رشد سریع به کارگیری و توجه زیاد به این فناوری شده‌است این است که فاقد الکتریسیته گرما و تشعشعات خطرناک ماورای بنفش بوده (نور خالص و بی خطر) و دیگر اینکه بااین فناوری می‌شود نور روز (بدون گرما واشعه‌های ماورائ بنفش) را هم به داخل ساختمانها و نقاط غیر قابل دسترسی به نور خورشید منتقل کرد.

33

فناوری ساخت فیبرهای نوری

ویرایش شمیایی

برای تولید فیبر نوری، نخست ساختار آن در یک میله شیشه‌ای موسوم به پیش‌سازه از جنس سیلیکا ایجاد می‌گردد و سپس در یک فرایند جداگانه این میله کشیده شده تبدیل به فیبر می‌شود. از سال ۱۹۷۰ روش‌های متعددی برای ساخت انواع پیش‌سازه‌ها به کار رفته‌است که اغلب آنها بر مبنای رسوب‌دهی لایه‌های شیشه‌ای در داخل یک لوله به عنوان پایه قرار دارند.

روشهای ساخت پیش‌سازه

روش‌های فرایند فاز بخار برای ساخت پیش‌سازه فیبر نوری را می‌توان به سه دسته تقسیم کرد:

  • رسوب‌دهی داخلی در فاز بخار
  • رسوب‌دهی بیرونی در فاز بخار
  • رسوب‌دهی محوری در فاز بخار

موادلازم در فرایند ساخت پیش سازه

  • تتراکلرید سیلیکون: این ماده برای تأمین لایه‌های شیشه‌ای در فرایند مورد نیاز است.
  • تتراکلرید ژرمانیوم: این ماده برای افزایش ضریب شکست شیشه در ناحیه مغزی پیش‌سازه استفاده می‌شود.
  • اکسی کلرید فسفریل: برای کاهش دمای واکنش در حین ساخت پیش‌سازه، این مواد وارد واکنش می‌شود.
  • گاز فلوئور: برای کاهش ضریب شکست شیشه در ناحیه غلاف استفاده می‌شود.
  • گاز هلیم: برای نفوذ حرارتی و حباب‌زدایی در حین واکنش شیمیایی در داخل لوله مورد استفاده قرار می‌گیرد.
  • گاز کلر: برای آب‌زدایی محیط داخل لوله قبل از شروع واکنش اصلی مورد نیاز است.

مراحل ساخت

  1. مراحل صیقل گرمایشی: پس از نصب لوله با عبور گازهای کلر و اکسیژن، در دمای بالاتر از ۱۸۰۰ درجه سلسیوس لوله صیقل داده می‌شود تا بخار آب موجود در جدار درونی لوله از آن خارج شود.
  2. مرحله اچینگ: در این مرحله با عبور گازهای کلر، اکسیژن و فرئون لایه سطحی جدار داخلی لوله پایه خورده می‌شود تا ناهمواری‌ها و ترک‌های سطحی بر روی جدار داخلی لوله از بین بروند.
  3. لایه‌نشانی ناحیه غلاف: در مرحله لایه‌نشانی غلاف، ماده تتراکلرید سیلیسیوم و اکسی کلرید فسفریل به حالت بخار به همراه گازهای هلیم وارد لوله شیشه‌ای می‌شوند و در حالتی که مشعل اکسی هیدروژن با سرعت تقریبی ۱۲۰ تا ۲۰۰ میلی‌متر در دقیقه در طول لوله حرکت می‌کند و دمایی بالاتر از ۱۹۰۰ درجه سلسیوس ایجاد می‌کند، واکنش‌های شیمیایی زیر به دست می‌آیند.

ذرات شیشه‌ای حاصل از واکنش‌های فوق به علت پدیده ترموفرسیس کمی جلوتر از ناحیه داغ پرتاب شده و بر روی جداره داخلی رسوب می‌کنند و با رسیدن مشعل به این ذرات رسوبی حرارت کافی به آنها اعمال می‌شود به طوری که تمامی ذرات رسوبی شفاف می‌گردند و به جدار داخلی لوله چسبیده و یکنواخت می‌شوند. بدین ترتیب لایه‌های شیشه‌ای مطابق با طراحی با ترکیب در داخل لوله ایجاد می‌گردند و در نهایت ناحیه غلاف را تشکیل می‌دهند.

فیبر نوری در ایران

در ایران در اوایل دهه ۶۰، فعالیت‌های پژوهشی در زمینه فیبر نوری در پژوهشگاه، برپایی مجتمع تولید فیبر نوری در پونک تهران را درپی داشت و در سال ۱۳۶۷، کارخانه تولید فیبر نوری در یزد به بهره برداری رسید. عملاً در سال ۱۳۷۳ تولید فیبر نوری با ظرفیت ۵۰٫۰۰۰ کیلومتر در سال در ایران آغاز شد. فعالیت استفاده از کابل‌های نوری در دیگر شهرهای بزرگ ایران آغاز شد تا در آینده نزدیک از طریق یک شبکه ملی مخابرات نوری به هم بپیوندند. در همان سال ۱۳۶۷ نخستین خط مخابراتی تار نوری بین تهران و کرج به کار افتاد.

اولین پروژه فیبرنوری با اجرای ۷۰۰ کیلومتر کابل با ۱۳ هزار کانال بین چندین مسیر با هزینه‌ای بالغ بر ۴۰ میلیارد ریال بین سالهای ۶۹ تا ۷۳ انجام شد. در برنامه دوم توسعه پروژه فیبرنوری با ۱۱۶۰۰ کیلومتر کابل با ۶۲۰ هزار کانال بین شهری با هزینه ۶۵۴ میلیارد ریال در سالهای ۷۴ تا ۷۸ به انجام رسید و نهایتاً در برنامه سوم توسعه ۱۷۸۵۰ کیلومتر تا ۲ میلیون کانال با پروتکشن بین شهرهای کشور با هزینه‌ای بالغ بر ۱۰۳۵ میلیارد در سالهای ۷۹ تا ۸۳ اجرا شد.

پروژه تار نوری آسیا-اروپا که به TAE مشهور است داراری ۲۴۰۰۰ کیلومتر طول است و از چین، قرقیزستان، ازبکستان و ترکمنستان، ایران، ترکیه، اوکراین و آلمان می‌گذرد. ظرفیت قابل حمل این خط، ۷۵۶۰ کانال تلفنی است.

فیبرنوری یک موجبر استوانه‌ای از جنس شیشه یا پلاستیک است که دو ناحیه مغزی و غلاف با ضریب شکست متفاوت و دو لایه پوششی اولیه و ثانویه پلاستیکی تشکیل شده‌است. برپایه قانون اسنل برای انتشار نور در فیبر نوری شرط: می‌بایست برقرار باشد که به ترتیب ضریب شکست‌های مغزی و غلاف هستند. انتشار نور تحت تأثیر عواملی ذاتی و اکتسابی دچار تضعیف می‌شود. این عوامل عمدتآ ناشی از جذب فرابنفش، جذب فروسرخ، پراکندگی رایلی، خمش و فشارهای مکانیکی بر آنها هستند.

فیبر نوری(لوله نوری) POF ,PCF , QOF در ایران

از سال ۱۳۸۷ تحقیقات وسیعی در مورد این نوع از فیبرها در مرکز فناوری تخصصی صورت گرفت و در سال ۱۳۸۸ محققان ایرانی در شهر اصفهان موفق به ساخت و تولید نسل نوین فیبرهای نوری (POF , PCF ,QOF) گردیدند و با دستیابی به تکنولوژی ساخت و تولیدآنها ایران در زمره معدود کشورهای دارنده تکنولوژی ساخت (POLYMER OPTICAL FIBER , PLASTIC CLAD FIBER) قرار گرفت. فیبرهای نوری POF برای انتقال نور مرئی و بسیاری از کاربری‌های دیگر قابل استفاده هستند و در بحث انتقال دیتا سرعتی حدود ۴۰ گیگا بیت در ثانیه دارند که در مقایسه با فیبرهای نوری شیشه‌ای حدود ۴۰۰ برابر بیشتر می‌باشد. فیبرهای PCF , QOF جهت مصارف خاص صنایع مختلف از قبیل سنسورها و انتقال دیتا بسیار کار آمد است. در کل موارد استفاده از این فیبرهاموجب دستیابی به ابزارآلات هایتکی است که در انحصار بعضی از دولتها قرار داشته‌است.

در POFها شار نوری.

فیبرهای نوری نسل سوم

طراحان فیبرهای نسل سوم، فیبرهایی را مد نظر داشتند که دارای کمترین تلفات و پاشندگی باشند. برای دستیابی به این نوع فیبرها، محققین از حداقل تلفات در طول موج ۱۵۵۰ نانومتر و از حداقل پاشندگی در طول موج ۱۳۱۰ نانومتر بهره جستند و فیبری را طراحی کردند که دارای ساختار نسبتاً پیچیده‌تری بود. در عمل با تغییراتی در پروفایل ضریب شکست فیبرهای تک مد از نسل دوم، که حداقل پاشندگی آن در محدوده ۱٫۳ میکرون قرار داشت، به محدوده ۱٫۵۵ میکرون انتقال داده شد و بدین ترتیب فیبر نوری با ماهیت متفاوتی موسوم به فیبر دی. اس. اف (D.S.F. Fiberِ) ساخته شد.

mohamad بازدید : 428 پنجشنبه 28 فروردین 1393 نظرات (0)

                به نام خدا                کسری نادم ملاصدرا 05                 آقای سلامی                              عنوان. طلای سیاه                       نفت چیست؟

نفت مخلوطی است از ئیدروکربن های جامد . مایع و گاز که از تجزیه شدن پیکر مرده ی جانداران تک سلولی . که میلیونها سال پیش می زیسته اند ، بوجود آمده است . در جستجوی نفت نفت ، آمیخته ای است از مواد شیمیایی آلی ، عمدتا از بقایای گیاهان و جانوران خرد و ریزی که میلیونها سال پیش در دریا می زیسته اند . شرایط و حالات ویژه و زمانهای بسیار دراز لازم بوده است تا این بقایا در معرض تغییر و تبدیل های پیچیده شیمیایی قرار گیرند و نتیجتا نفت و گاز ایجاد شود . گاه این توده مواد به نحوی در یک نقطه متمرکز می شود که انسان بتواند جای آن را کشف و از آن بهره برداری کند.

تاریخچه

بشر از قرنها پیش به وجود نفت پی برده بود و این ماده روغنی شکل و اعجاب‌ آمیز از دیر باز مورد استفاده پیشینیان بوده است. نفت را OIL یا Petroleum (روغن سنگ) می‌نامند. در زبان اوستایی نپتا به معنی روغن معدنی است که کلدانیها و عربها آن را از فارسی گرفته و نفت خوانده‌اند. هم‌اکنون بیش از دو سوم انرژی مصرفی جهان از نفت تامین می‌شود. نظریات متعددی راجع به منشاء نفت و گاز ابراز شده است که اولین فرضیه ها برای تشکیل هیدروکربنها با منشاء غیر آلی نظیر منشاء آتشفشانی، شیمیائی و فضائی ارائه گردیده است. لکن امروزه در خصوص منشاء آلی هیدروکربها اتفاق نظر وجود دارد. این مواد آلی می تواند بقایای گیاهان و حیوانات خشکی و دریائی عمدتا" پلانکتونها باشد.

به طور دقیق تر در دریا و اقیانوس دو دسته تولیدکننده اصلی ماده آلی مناسب برای تبدیل به نفت داریم: فیتوپلانکتونها (دیاتومه ،داینوفلاژله، جلبک سبزآبی) زئوپلانکتونها و جانوران عالی تر تغذیه کننده از فیتوپلانکتونها.

برای اینکه تولید مواد آلی در محیط آبی به میزان مناسبی باشد، دو عامل دخالت دارند:

1.ضخامت زون نور دار

2.میزان ورود مواد مغذی به زون نوردار ( مواد مغذی که برای رشد گیاهان و جانوران مفیدند همانا فسفاتها و نیتراتها و اکسیژن هستند.)

بنابر این توضیحات بیشترین تولید مواد آلی در دو ناحیه عمده در حواشی قاره هاست که عبارتند از آبهای کم عمق فلات قاره و زونهای چسبیده به محیطهای قاره ای که جریان روبه بالای آبهای سرد و عمیق اقیانوسی را پذیرا می شوند. در چنین محیطهایی که تولید مواد آلی زیاد است، با رخ دادن طوفان و مخلوط شدن آبهای بی اکسیژن و اکسیژن دار ، و یا ازدیاد تولید جانداران و کم شدن اکسیژن ، گروهی از جانداران دچار مرگ و میر گروهی می شوند و در کف محیط روی هم انباشته می شوند. اهمیت پلانکتونها در تشکیل نفت از آنجا ناشی می شود که آب دریا ناحیه مساعدی جهت تکثیر پلانکتون ها می باشد و تعداد آنها نیز در آب دریا بسیار زیاد می باشد. پلانکتونها به علت سرعت رشد و کوچکی جثه، ماده آلی مناسبی است که به سهولت به وسیله رسوبات ریز دانه مدفون گشته و مصون از اکسید شدن در رسوبات باقیمانده و هیدروکربن را تولید می نماید. طبق نظریات جدید مواد مختلف آلی ته نشین شده با رسوبات نرم هنگام دیاژنز (سنگ شدن) تبدیل به یک ماده واسط بین ماده آلی و هیدروکربن می گردد. این ماده واسط کروژن (Kerogn) نامیده می شود. کروژن یک ماده جامد نامحلول آلی است که محصول دیاژنتیک مواد آلی است. توان تولیدی کروژنها برای تولید نفت و گاز متفاوت است.

نفت تشکیل یافته به علت مایع بودن و همچنین به علت خاصیت موئینگی محیط خود از خلال سنگها گذشته، زیر یک طبقه غیر قابل نفوذ در بالاترین قسمت یک چین‌خوردگی که تاقدیس نامیده می‌شود، ذخیره می‌گردد.



بررسی عوامل مشترک مخازن نفت و گاز نشان می دهد که:

الف- شرایط و محیط رسوبی خاصی لازم است تا طبقات نفت زا (سنگ مادرSource Rock) تشکیل شود و همچنین شرایط خاصی باید وجود داشته باشد تا مواد آلی رسوب یافته در این لایه ها به هیدروکربن تبدیل گردد.

ب- سنگ متخلخل و نفوذپذیری (سنگ مخزن Reservoir rock ) باید وجود داشته باشد تا فضای لازم جهت انبار شدن نفت فراهم آید.

ج- سنگ مخزن می بایستی شکل خاصی داشته باشد تا بتواند تله (Trap) را تشکیل داده باعث جمع شدن هیدروکربن گردد.

د- سنگ غیر قابل نفوذی (سنگ پوشش Cap Rock ) لازم است که مخزن را بپوشاند تا از خروج نفت و گاز از مخزن جلوگیری نماید.



تبدیل مواد الی به کروژن و گاز

در باره نحوه تبدیل مواد آلی رسوبات به نفت و گاز با مطالعات جدید ژئوشیمیائی و جمع آوری اطلاعات تجربی ثابت شده است که قسمت اعظم هیدروکربنهای طبیعی در اثر کراکینگ کروژن ناشی از حرارت زمین (ژئوترمال) تولید می گردد. همانطور که بیان گردید برای بوجود آمدن نفت و گاز وجود مواد آلی فراوان و تشکیل کروژن در هنگام دیاژنز رسوبات ضروری می باشد. پس سنگ مادر (Source Rock) سنگی است که دارای مقدار کافی کروژن باشد. شرایط مساعد رسوبی برای تجمع و ذخیره شدن مواد آلی شامل گیاهان و جانوران دریائی و همچنین مواد آلی خشکی که توسط رودخانه ها به حوزه رسوبی حمل می گردد، رسوبات رسی و یا گل کربناته (ریزدانه بودن و محیط آرام رسوب گذاری) می باشد. علاوه بر این محیط کف دریا بایستی محیط احیاء کننده باشد تا از اکسیدشدن مواد آلی جلوگیری بعمل آید.



طبیعی است هرچه میزان کروژن در سنگ مادر بیشتر باشد توانائی بیشتری برای تولید هیدروکربن وجود دارد لکن علاوه بر درصد مواد آلی، سنگ مادر بایستی ضخامت کافی نیز داشته باشد. براساس مطالعات ژئوشیمیائی انجام شده برای اینکه سنگ مادری بتواند هیدروکربن تولید نماید باید دارای حداقل تراکمی از کربن آلی باشد که از آن کمتر قادر به تولید هیدروکربن نخواهد بود. این حداقل عمدتا" 5/0 درصد کربن آلی برآورد می شود. سنگ مادرهائی که در حوزه های رسوبی ایران دیده می شود نظیر سازند کژدمی در ناحیه زاگرس حدود 10-5 درصد کربن آلی دارد که بیشتر از جلبکها منشاء گرفته است.



هیدروکربنها در اثر کراکینگ کروژن بوجود می آیند. کراکینگ کروژن عمدتا" در درجه حرارتهای 100-80 درجه سانتیگراد شروع می شود. این درجه حرارت در یک ناحیه رسوبی با درجه حرارت ژئوترمال طبیعی معادل عمقی بین 3000-2000 متر می باشد. بنابراین یک سنگ مادر هرچه قدر هم ضخیم و غنی از مواد آلی باشد تا در اعماق فوق قرار نگیرد نمی تواند هیدروکربن تولید نماید. بر همین اساس ابتدا نفت خام سنگین تولید می گردد. چگالی و وزن مخصوص نفت خام با ازدیاد عمق کاهش می یابد. هرچه قدر سنگ مادر عمیقتر مدفون گردد نفت تولید شده سبکتر است و گاز معمولا" محصول آخرین این فعل و انفعالات است.



بنابراین ابتدای نفت های بسیار سنگین، نفتهای پارافینیک، نفتهای سبک، نفتهای میعانی و نهایتا" گاز بدست می آید. وقتی درجه حرارت از 165 درجه سانتیگراد تجاوز کند فقط گاز تولید خواهد شد یعنی تقریبا" از عمق 5000 متر بیشتر (ضخامت رسوبی) احتمال یافتن نفت بسیار کم می شود و فقط می توان انتظار یافتن گاز را داشت. در درجه حرارتهای بالاتر از 230 درجه سانتیگراد کروژن یک بافت گرافیتی ثابت پیدا می کند که با ازدیاد درجه حرارت هیدروکربنی تشکیل نمی شود (نسبت هیدروژن به کربن تغییر نمی یابد). به طور کلی ازدیاد عمق باعث ازدیاد درجه حرارت می گردد که این ازدیاد درجه حرارت دو اثر دارد:



الف- کراکینگ کروژن و تبدیل مولکولهای بزرگ به مولکولهای کوچکتر مانند تشکیل نفت و گاز

ب- پلیمریزاسیون مولکولها که به تشکیل متان و گرافیت ختم می گردد (کروژنهای گرافیتی)



نکته مهم دیگری که در مورد تشکیل هیدروکربنها وجود دارد زمان زمین شناسی می باشد. به عبارت دیگر رسوبات قدیمی تر (از نظر زمین شناسی) در درجه حرارتهای پائین تر، همان محصولی را می دهد که سنگ مادری با سن زمین شناسی کمتر در درجه حرارتهای بالاتر هیدروکربن تولید خواهد نمود

گاز



به علت فشار زیاد درون حفره نفتی، مقدار زیادی از گاز در نفت خام حل شده است. به همین دلیل نفت خامی را که از چاه بیرون می‌آید، قبل از انتقال دادن به پالایشگاه، ابتدا به دستگاه تفکیک مخصوصی می‌برند تا قسمت اعظم گازهای سبک و آب نمک آنرا جدا سازند. گازی که مستقیماْْ از چاههای نفت خارج می‌شود با گازی که به این وسیله از نفت خام تفکیک می‌گردد، پس از تصفیه به صورت گاز طبیعی به وسیله‌ی شبکه‌ی گازرسانی برای مصارف سوخت و صنایع پتروشیمی توزیع می‌شود. گاز طبیعی مخلوطی از ئیدروکربنهای سیرشده سبک مانند متان، اتان و اندکی پروپان و بوتان است. قسمت عمده این گاز متان و مقدار کمتری اتان می‌باشد.در این گازها غالباْْ آثاری از نیتروژن، کربن دی اکسید و گاهی ئیدروژن سولفید و هلیم وجود دارد. پس از استخراج نفت آن را پالایش می‌کنند.
گاز طبیعی در حالت عادی بدون بو است. به گاز طبیعی قبل از توزیع یک ماده از ترکیبات سولفور به نام تجاری مرکاپتان اضافه می‌شود تا هنگام نشت احتمالی گاز به ما کمک کند.                        

mohamad بازدید : 179 پنجشنبه 28 فروردین 1393 نظرات (0)

                  به نام خدا                 عارف پور قربان ملاصدرا05           آقای سلامی                               عنوان. چند سازه ها                                  

برخی از مشخصه های بارز کامپوزیت ها که موجب گسترش روزافزون آنها شده است، به شرح زیر می باشد:

  •  استحکام ویژه

این پارامتر استحکام ماده را در ارتباط با وزن آن نشان می دهد. برای مثال، برخی کامپوزیت ها مانند فایبر گلاس دارای مقاومت به ضربه بسیار بالاتری نسبت به فولاد و تیتانیوم، در مقایسه با وزن به کار رفته از هر کدام از آن ها می باشد.

  • قیمت

 برخی از محصولات کامپوزیتی دارای قیمت کمتری از محصولات مشابه فلزی هستند ولی باید خاطر نشان کرد که در برخی از کامپوزیت های پیچیده که کیفیت بسیار خوبی دارند، هزینه ساخت آن ها بسیار گران می باشد.

  •  فرآوری

 در مقایسه با فرآوری فلزات که نیازمند مقادیر بالاتری انرژی گرمایی می باشد، کامپوزیت های زمینه فلزی و پلیمری نیازمند انرژی کمتری برای شکل گیری و یا عمل آوری هستند. برخی از کامپوزیت ها در دمای پایین قابلیت فرآوری داشته و وقتی پخت می شوند دارای خواص ضربه ای بالا و مقاومت حرارتی خوبی می شوند. 

 

مزایا و معایب کامپوزیت ها

ویرایش
 
 
 
 

مزایای کامپوزیت ها

  • داشتن نسبت استحکام به وزن و نسبت سفتی به وزن بالا
  • غیر خورنده، غیر مغناطیسی بودن
  • دارای خاصیت جذب انرژی مناسب
  • دارای عمر خستگی بالا
  • توانایی قرار دادن سنسور درون مواد جهت کنترل کارکرد درست یا نادرست کامپوزیت ( کامپوزیت های هوشمند )
  • سهولت در ساخت ساختار های با اشکال پیچیده

معایب کامپوزیت ها

  • قیمت بالای مواد خام و فرآیند ساخت
  • تافنس ( مقاومت در برابر ضربه ) پایین
  • آلایندگی محیط زیست مخصوصا در مورد کامپوزیت های زمینه پلیمری 
 

کاربرد کامپوزیت ها

ویرایش
 
 
 
 

کامپوزیت ها به علت داشتن مزایا و خواص مناسب، گستره کاربردی وسیعی بین مواد پیدا کرده اند که برخی از این کاربردها در ذیل آورده شده است:

  • مخازن سوخت و لوله ها
  • صنایع نظامی
  • صنایع خودرویی
  • سازه های دریایی
  • صنعت ساختمان
  • تجهیزات ورزشی
  • پزشکی

کاربرد کامپوزیت ها

 

 

 

طبقه بندی کامپوزیت ها بر مبنای فاز زمینه

ویرایش
 
 
 
 

کامپوزیت ها بر مبنای نوع مواد زمینه به سه گروه زیر تقسیم می شوند : 

1- کامپوزیت های زمینه پلیمری

به دلیل قابلیت شکل پذیری آسان، وزن کم و خواص مکانیکی مطلوب، پلیمر به عنوان یک ماده آیده ­ال در زمینه کامپوزیت ها به شمار می رود. رایج ترین زمینه های پلیمری، رزین های اپوکسی و رزین های پلی استر هستند. از این رو رزین هایی که توانایی کار در دمای بالا را دارند به طور گسترده مورد توجه قرار دارند. چنانچه مواد زمینه از جنس پلاستیک باشد، به این کامپوزیت ها، پلاستیک های مقاوم شده نیز گفته می شود. 

2- کامپوزیت های زمینه فلزی

استحکام بالا، چقرمگی شکست و سفتی از جمله خواصی است که موجب گسترش مصارف کامپوزیت های زمینه فلزی در مقایسه با کامپوزیت های زمینه پلیمری شده است. این مواد مقاومت بیشتری در محیط های خورنده و درجه حرارت های بالا نسبت به پلیمرها دارند. بیشتر فلزات و آلیاژها می توانند به عنوان فاز زمینه در کامپوزیت ها استفاده شوند. تیتانیوم، آلومینیوم و منیزیم از جمله فلزات مرسومی هستند که عموما در  کامپوزیت های مصرفی در قطعات هواپیما به عنوان بکار می روند. چنانچه کامپوزیت زمینه فلزی با استحکام بالا مورد نیاز باشد، لازم است که از تقویت کننده هایی با مدول بالا استفاده شود. نقطه ذوب، خواص فیزیکی و شیمیایی کامپوزیت ها در دماهای مختلف، تعیین کننده دمای مناسب برای استفاده از آن ها می باشد.

3- کامپوزیت های زمینه سرامیکی

سرامیک ها به عنوان مواد جامدی که پیوند های یونی بسیار قوی و در برخی موارد پیوند های کوالانسی دارند، شناخته می شوند. نقطه ذوب بالا، مقاومت در برابر خوردگی مناسب، پایداری در دمای بالا و استحکام فشاری خوب، باعث شده است که کامپوزیت های زمینه سرامیکی در ساختار قطعاتی که در دمای بالاتر از 1500 درجه سانتیگراد کار می کنند، مورد استفاده قرار بگیرند.

مدول الاستیسیته بالا و کرنش کششی پایین در اکثر مواد سرامیکی منجر به شکست این قطعات می شود، لذا استفاده از تقویت کننده هایی که استحکام را بهبود ببخشند، لازم بنظر می رسد که بدین منظور تقویت کننده هایی با مدول الاستیسیته بالا توصیه می شود. چنانچه سرامیک زمینه ضریب انبساط حرارتی بالاتری از مواد تقویت کننده داشته باشد، این امر منجر به عدم بالا رفتن استحکام در کامپوزیت تولیدی می گردد. بنابراین در انتخاب مواد تقویت کننده در تولید این نوع کامپوزیت ها، علاوه بر مدول الاستیسیته می بایست به ضریب انبساط حرارتی نیز توجه شود. 

 

طبقه بندی کامپوزیت ها بر مبنای فاز تقویت کننده

ویرایش
 
 
 
 

کامپوزیت ها براساس نوع تقویت کننده به پنج گروه تقسیم می شوند:  

طبقه بندی کامپوزیت ها بر مبنلی فاز تقویت کننده

1- کامپوزیت های لایه ای

از لایه های مختلف مواد در کنار یکدیگر ساخته شده است. این لایه ها معمولا فلزی، سرامیکی و یا از پلیمرهای تقویت شده هستند که به صورت متناوب در کنار یکدیگر قرار می گیرند. سازه لایه ای را می توان بدون نیاز به فرآیندهای ساخت پیچیده تهیه و خواص جالبی از آن ها به دست آورد. به عنوان مثال برای ساخت تانک ها از سازه های لایه ای استفاده می شود. 

2- کامپوزیت های ذره ای

در این نوع کامپوزیت، فاز پراکنده شده از ذرات ریز تشکیل می شود. طیف وسیعی از ذرات برای استفاده در کامپوزیت ها کاربرد دارند ولی عمده ذرات مورد استفاده در کامپوزیت ها، ذرات اکسیدی به خصوص Al2O3 و ذرات غیراکسیدی مانند SiC، TiC، C، B و WC است. این ذرات بسیار ارزان تر از رشته ها هستند و سبب افزایش صلبیت یا مدول الاستیک ساختار می شوند. استفاده از آن ها در کامپوزیت های فلزی و پلیمری سبب بالا رفتن استحکام و کاهش چقرمگی می شوند. همچنین ماسه و پودرهای رزینی در دسته تقویت کننده های ذره ای قرار می گیرند. 

3- کامپوزیت های الیافی

فاز تقویت کننده در این مواد رشته ای شکل هستند. این دسته از تقویت کننده ها بسیار گسترده اند و صنعت کامپوزیت های پیشرفته براساس این تقویت کننده های مصنوعی الیافی است. این تقویت کننده ها به دو بخش سیم و یا رشته - لیف تقسیم می شوند؛ چنانچه این الیاف فلزی باشند به آن سیم و چنانچه سرامیکی یا پلیمری باشند به آن رشته - لیف گفته می شود.

کاربرد سیم ها به علت داشتن دانسیته زیاد محدود است. به طور کلی دو نوع سیم در صنعت بیشترین استفاده را دارد که یکی تنگستن و دیگری الیاف کوتاه فولادی اند. تنگستن استحکام و مدول الاستیک بالایی داشته و در حجم بالا در صنایع لامپ سازی مورد استفاده قرار می گیرد. الیاف فولادی بسیار ارزان و استحکام و مدول الاستیک آن در حد متوسط بوده و در لنت های ترمز با توجه به محدود شدن مصرف آزبست، استفاده می شود. 

4- کامپوزیت های ورقه ای

در این کامپوزیت، فاز پراکنده شده در زمینه از ورقه های مسطح ساخته می شود. ورقه های فلزی در زمینه پلیمری می توانند هادی جریان الکتریسیته و حرارت باشند در حالی که ورقه های میکا و شیشه در زمینه پلیمری مقاوم در برابر حرارت و نارسانا می باشند. 

5- کامپوزیت های حجمی

در این نوع از کامپوزیت ها زمینه یک فاز پیوسته است و فاز تقویت کننده به صورت یک ماده ثانویه درون آن قرار دارد. کامپوزیت های سرمتی جزء این دسته محسوب می شوند که دارای ساختار متخلخل و اسفنجی سرامیکی بوده و فلز تقویت کننده درون تخلخل های آن وارد شده است. با این کار همان خصوصیات سرامیک ها با چقرمگی بیشتر به دست می آید.

نمونه ای دیگر از کامپوزیت های حجمی در روتور موتورهای الکتریکی قابل مشاهده است. این روتور می بایست مغناطیس شود؛ جنس روتور از گرافیت بوده که ضریب اصطکاک کمی داشته و حین چرخش جریان را منتقل می کند. هدایت الکتریکی گرافیت خیلی بالا نبوده پس آن را با تخلخل درست می کنند و در آن مقداری مس یا نقره می زنند. 

کامپوزیت حجمی

 

روش ساخت کامپوزیت ها

ویرایش
 
 
 
 

برای ساخت انواع کامپوزیت ها و به منظور قراردادن فاز زمینه و فاز تقویت کننده در کنار هم، روش های مختلفی وجود دارد. از جمله این روش ها می توان به موارد زیر اشاره کرد:

1- روش ساخت کامپوزیت های زمینه پلیمری به صورت قالب باز

  1. اتوکلاو
  2. RTM
  3. VARTM
  4. پیچش الیاف

 

mohamad بازدید : 706 یکشنبه 24 فروردین 1393 نظرات (0)

                 به نام خدا                 مهدی محمد یاری ملاصدرا 06        آقای  سلامی                              عنوان . شبه فلز                          

شبه‌فلزات

از ویکی‌پدیا، دانشنامهٔ آزاد
 ۱۳۱۴۱۵۱۶۱۷
۲ B
بور
C
کربن
N
نیتروژن
O
اکسیژن
F
فلوئور
۳ Al
آلومینیوم
Si
سیلیسیوم
P
فسفر
S
گوگرد
Cl
کلر
۴ Ga
گالیوم
Ge
ژرمانیوم
As
آرسنیک
Se
سلنیوم
Br
برم
۵ In
ایندیوم
Sn
قلع
Sb
آنتیموان
Te
تلوریوم
I
ید
۶ Tl
تالیوم
Pb
سرب
Bi
بیسموت
Po
پولونیوم
At
استاتین

شبه‌فلز، یک عنوان برای طبقه‌بندی عناصر شیمایی است. که به عناصری اطلاق می‌گردد که خواصشان میان فلز و نافلز است.

تعریف معینی برای شبه فلزها وجود ندارد اما دو خاصیت زیر مشخصه آنها است:


عناصر شبه فلزی

عناصر زیر در دسته شبه‌فلزها جای می‌گیرند:[۱][۲]

بور

نوشتار اصلی: بور
Dull, lustrous granules, pebbles and irregular blob-like lumps, most grey, a few brown.
بور

سیلیسیم

نوشتار اصلی: سیلیسیم
A lustrous blue gray potato shaped lump with an uneven and irregular corrugated surface.
سیلیسیم

ژرمانیم

نوشتار اصلی: ژرمانیم
Grayish lustrous block with uneven cleaved surface.
ژرمانیم

آرسنیک

نوشتار اصلی: آرسنیک
Two dull silver clusters of crystalline shards.
آرسنیک

آنتیموان

نوشتار اصلی: آنتیموان
A glistening silver rock-like chunk, with a blue tint, and roughly parallel furrows.
آنتیموان

تلوریم

نوشتار اصلی: تلوریم
A shiny silver-white medallion with a striated surface, irregular around the outside, with a square spiral-like pattern in the middle.
تلوریم

بعضی از آلوتروپ‌های دیگر عناصر نیز مانند شبه‌فلزها رفتار می‌کنند. همه این عناصر در بلوک پی قرار دارند

منابع

  1. E. Sherman and G.J. Weston (1966). Chemistry of the non-metallic elements. Pergamon Press, New York. p. 64.
  2. Boylan, P.J. (1962). Elements of Chemistry. Allyn and Bacon, Boston. p. 493.
  3. Liu, E (1978). "Fluorination of dimethylmercury, tetramethylsilane and tetramethylgermanium. Synthesis and characterization of polyfluorotetramethylsilanes, polyfluorotetramethylgermanes,bis(trifluoromethyl)mercury and tetrakis(trifluoromethyl)germanium". Journal of Organometallic Chemistry 145: 167. DOI:10.1016/S0022-328X(00)91121-5.
  4. Schnepf, Andreas (2008). "Metalloid Cluster Compounds of Germanium: Synthesis – Properties – Subsequent Reactions". European Journal of Inorganic Chemistry 2008: 1007. DOI:10.1002/ejic.200700969.
  5. Casiot, C (2002). "Optimization of the hyphenation between capillary zone electrophoresis and inductively coupled plasma mass spectrometry for the measurement of As-, Sb-, Se- and Te-species, applicable to soil extracts". Spectrochimica Acta Part B Atomic Spectroscopy 57: 173. DOI:10.1016/S0584-8547(01)00365-2.
  6. Chasteen, Thomas G.; Bentley, R (2003). "Biomethylation of Selenium and Tellurium: Microorganisms and Plants". Chemical Reviews 103 (1): 1. DOI:10.1021/cr010210. PMID 12517179.
  7. Polonium-210 Information Sheet
  8. Rubin, K (1997). "Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes: Observations and predictions". Geochimica et Cosmochimica Acta 61: 3525. DOI:10.1016/S0016-7037(97)00179-8.

 

           

mohamad بازدید : 686 یکشنبه 24 فروردین 1393 نظرات (1)

               به نام خدا            محمد غلامی پستکی ملاصدرا 06   آقای سلامی                              عنوان.چند سازه ها                     

چند سازه چیست؟

چند سازه ها موادی هستند که در ساختار آنها از بیش از یک جزء استفاده شده باشد.در این مواد اجزای گوناگون خواص فیزیکی و شیمیایی خود را در ترکیب حفظ می کنند،همچنین ماده ی حاصل از این اجزا دارای خواص بهینه ای میباشد.

 چند سازه ها در ابعاد نانودر دنیای امروز،از فناوری،به عنوان روندی کلیدی و اثر بخش در علم،فناوری و صنایع یاد می شود.فناوری نانومدیون ریز شدن چند سازه ها در ابعاد نانواست.نانو در حقیقت چند سازه ها در ابعاد نانو می باشد.گرچه تعداد کمی از این چند سازه ها (نانو) در صنعت و علم به صورت رایج مورد استفاده قرار می گیرند ولی تلاش برای کشف و تولید این نوع از چند سازه ها و همچنین رساندن کشف شده ها به تولید انبوه بسیار زیاد است.این ها به خاطر قابلیت های فراوان نانو(حسگرها،نیمه رساناها،کاتالیز گرها،صنایع نوری الکترونیکی و...)است.

نانو رسها و لوله های کربنی نانو دو نوع مهم از نانو ها هستند.

خواص چند سازه های مورد استفاده كنونی
خواص فیزیكی، مكانیكی و زیبایی چند سازه ها و هم چنین رفتار بالینی آنها به ساختارشان وابسته است. چند سازه های دندانی اساسا از سه نوع ماده متفاوت از نظر شیمیایی تشكیل شده اند: ماتریس آلی یا فاز آلی، ماتریس های غیر آلی، پركننده یا فاز پراكنده، و یك آلی سیلان یا عامل جفت كننده كه باعث پیوند پر كننده به رزین های آلی می شود. این عامل مولكولی با گروه های سیلان در یك انتها (پیوند یونی با SiO2 ) و گروههای متا كریلات در انتهای دیگر (پیوند كووالانسی با رزین) است.
ماتریس آلی رزین های چند سازه از این اجزا تشكیل شده است: 1- سامانه ای از تكپارهای تك عاملی، دو عاملی یا سه عاملی. 2- یك سامانه شروع بسپارش رادیكال آزاد كه در رزین های چند سازه ای كه قابل پخت با نور هستند یك a – دی كتون (camphoroquinone) است كه به همراه یك آمین آلیفاتیك نوع سوم به عنوان عامل كاهنده استفاده می شود و در رزین های قابل پخت شیمیایی، یك تركیب بنزوئیل پراكسید است كه به همراه یك آمین آروماتیك نوع سوم استفاده می شود . 3- یك سامانه شتاب دهنده كه روی شروع كننده اثر می گذارد و باعث می شود تا پخت در زمانی كه از نظر بالینی قابل قبول است انجام شود. 4- یك سامانه پایدار كننده یا بازدارنده مانندhyroquinone monomethyl ether كه به منظور بیشینه كردن عمر انبارش محصول قبل از پخت و پایداری شیمیایی آن بعد از پخت می شود. 5- و در نهایت جذب كننده های نور UV با طول موج كمتر از 350 nm مانند 2-hydroxy – 4- methoxybenzophenone كه باعث پایداری رنگ می شوند و اثر نور UV بر تركیبات آمین در سامانه شروع كننده را كه در بلند مدت می تواند باعث تغیی رنگ شود، حذف می كنند.
سامانه تكپاری را می توان بعنوان جز اصلی سامانه رزین چند سازه مورد توجه قرار داد. Bis GMA هنوز هم پر كاربردترین تكپار برای ساخت چند سازه های كنونی است. این ماده به تنهایی یا به همراه یورتان دی متاكریلات، حدود 20 درصد حجمی تركیبات رزین چند سازه را تشكیل می دهد. به طور كلی هر چه وزن مولكولی متوسط تكپار یا تركیب تكپارها كمتر باشد، درصد جمع شدگی بیشتر است. چون این نوع رزین بسیار گرانرو است، به منظور تسهیل فرآیند ساخت و كاربرد بالینی به وسیله ی تكپارهای دیگر كه گرانروی كمی دارند (وزن مولكولی كم) رقیق می شود.
این تكپارها مانند UDMA, Bis-DMA, EGDMA, TEGDMA, MMA به عنوان كنترل كننده های گرانروی شناخته می شوند.
بسپارش چند سازه بسته به نوع ماتریس آلی همیشه با درجه ای از جمع شدگی همراه است. در نتیجه برای كاهش این اثر منفی، صنعت دندان پزشكی انواع مختلفی از تكپارها را امتحان كرده است كه از آن جمله می توان به تركیبات سامانه epoxy-polyol كه در حالت های آزمایشگاهی حدود 40-50% جمع شدگی كمتری نسبت به سامانه های سینی نشان می دهند، رزین های بر پایه siloxane-oxirane استفاده از مولكول های با وزن مولكولی زیاد مانند multiethylene glycol dimethacrylate و همبسپارهایی كه با با كاهش پیوند C=C به درصد تبدیل 90-100 رسانده می شوند، اشاره كرد. اورموسرها (Ormocer ) یا چند سازه های اصلاح شده با پر كننده های آلی و معدنی نیز توانایی خود را برای كاهش جمع شدگی ناشی از پخت نشان داده اند كه البته این كاهش بسیار كم است، با این وجود تولید كنندگان اصلی چند سازه های دندانی در حال حاضر هنوز هم بر سامانه های سنتی تكیه دارند و بیشتر یك تكپار Bis-GMA/TEGDMA یا تركیب Bis-GMA/UEDMA/TEGDMA را به ماتریس آلی اضافه می كنند.
فاز پراكنده رزین های چند سازه یك ماده پر كننده معدنی است كه خصوصیات مكانیكی و فیزیكی چند سازه را مشخص می كند. طبیعت و جنس پر كننده، روش تهیه و میزان استفاده، تاثیر بسیار زیادی بر خواص مكانیكی ماده دارند. ذرات پر كننده به منظور بهبود خواص فیزیكی و مكانیكی به ماتریس آلی اضافه می شوند و بنابراین استفاده از بالاترین درصد ممكن پر كننده مد نظر است. پر كننده ضریب انبساط حرارتی و جمع شدگی كلی ناشی از پخت را كاهش می دهد، سبب كاهش گذردهی نسبت به امواج می شود و عامل های مربوط به زیبایی را بهبود می بخشد.
ذرات پر كننده مورد استفاده از نظر تركیب شیمیایی، ریخت شناختی و ابعاد بسیار با یكدیگر تفاوت دارند. مهم ترین پر كننده سیلیكون دی اكسید است. برون سیلیكات ها و لیتیم آلومینیوم یا زیر كوئیم كه نسبت به امواج رادیوئی غیر شفاف هستند جای گزین می شود. در حال حاضر تحقیقات روی موادی مانند كلسیم متا فسفات ها در حال انجام است كه از شیشه نرم ترند و بنابراین باعث سایش كمتری در دندان می شوند.
نانو فنآوری باعث گسترش رزین های چند سازه ای جدیدی شده كه حاوی نانو ذرات با اندازه ی تقریبی nm 25 و نانو انبوهه هایی با اندازه تقریبی nm 75 بوده و از ذرات نانو سیلیكا یا سیلیكا/ زیركونیم تشكیل شده است. انبوهه ها با سیلان آموده می شوند تا به رزین متصل شوند. توزیع پر كننده (نانو انبوهه ها و نانو ذرات)بار گذاری بالایی در حد 79،5% را نشان می دهد.
با كاهش اندازه ذرات، رزین های ساخته شده از این نوع ذرات برای استفاده ترمیمی مناسب ترند، به طوری كه خواص سطحی بهتری دارند و احتمال تخریب زیستی ماده در طول زمان كاهش می یابد. این فنآوری همچنین به خواص مكانیكی مناسب برای استفاده رزین چه در قسمت های قدامی و چه خلفی دهان دست یافته است. این نكته نیز باید ذكر شود كه هر چه اندازه ذرات كوچك تر باشد، جمع شدگی حاصل از پخت كمتر خواهد بود، هم چنین انحنای دیواره كمتر می شود و از میزان شكاف های میكرومتری در لبه های مینای دندان كه باعث نشت از حاشیه ها، تغییرات رنگ، نفوذ باكتری ها و حساسیت می گردد، كاسته می شود.
اشكال مورد ذكر شده این است كه چون ذرات بسیار كوچكند نور را بازتاب نمی دهند، بنابراین آنها را با ذرات بزرگ تر با قطر متوسطی در محدوده طول موج نور مرئی (یعنی در حدود mµ1 و كمتر) تركیب می كنند تا خواص نوری آنها بهبود یابد و مانند یك زیر لایه عمل كنند.
رزین های چند سازه بسته به تركیبشان به طرق مختلف طبقه بندی شده اند تا دندان پزشكان قادر به شناسایی آسان و استفاده از آنها به منظور كاربردهای درمانی باشند. یكی از معمول ترین طبقه بندی ها كه هنوز هم كاربرد دارد طبقه بندی Lutz and Phillips است كه بر اساس اندازه ذرات انجام شده است. آن ها رزین های چند سازه را به سه دسته: چن سازه های درشت پر كننده (ذرات از 1/0 تا 100 میكرون)، چند سازه های ریز پر كننده (ذرات 04/0 میكرون) و چند سازه های تركیبی (پركننده هایی با اندازه متفاوت) تقسیم كردند. طبقه بندی جزئی تری توسط Willems و همكارانش انجام شده كه بر پایه پارامترهایی مانند مدول یانگ، درصد حجمی پر كننده ی معدنی،اندازه ذرات اصلی، زبری سطح و تنش فشاری استوار است

 

mohamad بازدید : 1432 شنبه 23 فروردین 1393 نظرات (0)

                به نام خدا                   مهدی محمدیاری  ملاصدرا 06         آقای سلامی                        عنوان . کراکینگ ها                     

کراکینگ

واحد تولید بنزین به روش کراکینگ کاتالیزوری بستر سیال، پالایشگاه بایوی، نیوجرسی،۱۹۶۹

کراکینگ (به انگلیسی: Cracking) فرآیندی است که در صنایع پتروشیمی کاربرد داشته و برای کاهش وزن مولکولی هیدروکربن‌ها به وسیله شکستن پیوندهای آنها استفاده می‌شود.این فرآیند از روش‌های اصلی در تبدیل نفت خام به سوختهای مفید مانند بنزین، گازوییل، سوخت جت و نفت سفید است. کراکینگ گرمایی، کراکینگ کاتالیستی، هیدروکراکینگ و کراکینگ با بخار آب از متداول‌ترین انواع روش‌های کراکینگ در صنایع هستند.[۱][۲] این فرآیند یا در دما و فشار بالا و بدون کاتالیزور انجام می‌شود و یا در دمای پایین و فشار کم و در حضور کاتالیزور انجام می‌شود. منبع اصلی هیدروکربن‌های بزرگ، برشهای نفت سفید یا بنزین در فرآیند تقطیر جزء به جزء نفت خام می‌باشد.این برش‌های نفتی به صورت مایع از فرآیند تقطیر به دست می‌آیند اما پیش از فرآیند کراکینگ دوباره تبخیر می‌شوند. در فرآیند کراکینگ تنها یک واکنش منحصر به فرد رخ نمی‌دهد.پیوند هیدروکربن‌ها به صورت اتفاقی می‌شکند و مخلوطی از هیدروکربن‌های کوچکتر را ایجاد می‌کند که برخی از آنها هیدروکربن‌های دارای پیوند دوگانه کربن-کربن است.[۳]

محتویات

    تاریخچه

    نمایی از یک واحد کراکینگ شوخوف، باکو، اتحاد جماهیر شوروی،۱۹۳۴.

    پس از جنگ جهانی اول به سبب گسترش و پیشرفت صنایع و تقاضای روبه رشد انرژی و محصولات نفتی، عرضه این محصولات در بازار پاسخگوی نیاز نبود.بنابراین دانشمندان پالایش نفت، به تدریج با وارد کردن فرآیندهای شکست ملکولی [واژه‌نامه ۱]، بالابردن کیفیت و کمیت محصولات مختلف نفتی را هدف خود قرار دادند و در این امر به موفقیت‌های بزرگی دست یافتند.کراکینگ حرارتی که که به عنوان کراکینگ شوخوف [واژه‌نامه ۲] نیز شناخته می‌شود در سال ۱۸۹۱ توسط مهندس روسی به نام ولادیمیر شوخوف[واژه‌نامه ۳] معرفی شد.[۴] سپس این فرآیند توسط یک مهندس آمریکایی به نام ویلیام برتن [واژه‌نامه ۴] در سال ۱۹۱۳ اصلاح گردید.[۵] این فرآیند به زودی در صنعت پالایش نفت بیشتر مورد توجه قرار گرفت تا آنجا که بین سالهای ۱۹۲۰ تا ۱۹۳۵ میزان بنزین تولیدی از طریق کراکینگ حرارتی [واژه‌نامه ۵] به دو برابر مقدار تولید بنزین از تقطیر نفت خام رسید.به مرور زمان کارشناسان توانستند توسط کراکینگ کاتالیزوری[واژه‌نامه ۶]، بنزین مرغوب تری در مقایسه با کراکینگ حرارتی تولید کنند. این روند از جنگ جهانی دوم ادامه یافت و تاکنون نیز دانشمندان بسیاری سعی در بهبود روش‌های کراکینگ نفت خام و استفاده از فرآیندهای جدیدتر و اقتصادی تر کرده‌اند. روش کراکینگ کاتالیزوری در سال ۱۹۲۳ توسط مهندس فرانسوی اوژن هودری [واژه‌نامه ۷] ارائه گردید و اولین واحد صنعتی آن درسال ۱۹۳۶ در آمریکا به وسیله شرکت هودری ساخته شد.[۶][۷] در می۱۹۴۲، نوع پیشرفته تری از فرآیند کراکینگ کاتالیزوری، یعنی کراکینگ کاتاالیزوری بستر سیال در پالایشگاه (Baton Rouge refinery) بهره برداری شد.این اولین واحد کراکینگ کاتالیزوری بستر سیال در جهان بود.[۸] امروزه شرکت‌های فراوانی دارای این فناوری هستند که مهمترین این شرکت‌ها عبارتند از:

    سازوکار فرآیند

    کراکینگ یک سازوکار رادیکالی دارد. در ابتدا تعدادی از مولکول‌ها به رادیکال‌های آزاد شکسته می‌شود که برای شروع فرآیند الزامی است.(در اینجا برای نمونه شکست مولکول‌های اتان را بررسی می‌کنیم)

    CH۳CH۳ → 2 CH۳

    سپس رادیکال‌های ایجاد شده به مولکول‌های دیگر برخورد کرده و یک مولکول متان و یک رادیکال دیگر ایجاد می‌شود.

    CH۳• + CH۳CH۳ → CH۴ + CH۳CH۲

    رادیکال‌های اتان می‌توانند خود تجزیه شده و یک رادیکال هیدروژن و یک مولکول اتن که یک آلکن است تشکیل دهند.این واکنش در شرایطی که کراکینگ با بخار آب انجام شود رخ می‌دهد.

    CH۳CH۲• → CH۲=CH۲ + H•

    رادیکال‌های اتان در برخورد با مولکول‌های اتن به رادیکال‌های بزرگتر تبدیل می‌شود که معمولا در تشکیل ترکیبات آروماتیک رخ می‌دهد.

    CH۳CH۲• + CH۲=CH۲ → CH۳CH۲CH۲CH۲

    این فرآیند زنجیره‌ای زمانی که دو رادیکال آزاد با یکدیگر برخورد کنند خاتمه می‌یابد.

    CH۳• + CH۳CH۲• → CH۳CH۲CH۳
    CH۳CH۲• + CH۳CH۲• → CH۲=CH۲ + CH۳CH۳

    همان طور که مشخص است در این فرآیند مولکول‌های هیدروژن، آلکن، هیدروکربن‌های کوچکتر و در برخی شرایط هیدروکربن‌های سنگین تر تولید می‌شود.در نتیجه محصولات تولیدی در فرآیند کراکینگ مجموعه از هیدروکربن‌های با وزن مولکولی متفاوت است که در مرحله بعد باید از هم جدا شوند.هیدروکربن‌های سبک به عنوان محصول فرآیند خارج شده و هیدروکربنهای سنگین تر دوباره به راکتور برگشت داده می‌شود.[۱۰]

    کراکینگ گرمایی

    شمایی ساده از یک فرآیند کراکینگ گرمایی

    در کراکینگ گرمایی، آلکان‌ها را بطور ساده از درون اطاقی که تا دمای بالا گرم شده‌است، عبور می‌دهند.آلکان‌های بزرگ به آلکان‌های کوچکتر، آلکن‌ها و مقداری هیدروژن تبدیل می‌شود. این فرایند مقدار زیادی اتیلن(C۲H۴)همراه با مولکول‌های کوچکتر دیگر به وجود می‌آورد. [۱۱] در طی این فرآیند خوراک در داخل کوره تا دمای (۹۵۰ تا۱۰۲۰ فارنهایت) گرم می‌شود. مدت حرارت دیدن خوراک باید کوتاه باشد تا از انجام واکنش شیمیایی در طول فرآیند جلوگیری شود در غیر این صورت مقدار زیادی کک تشکیل شده که لوله‌های کوره را مسدود کرده و موجب توقف فرآیند می‌شود.گر چه تولید اندکی کک اجتناب ناپذیر است.سپس خوراک حرارت دیده به داخل راکتور انتقال یافته ودر فشار بالا مولکول‌های آن شکسته می‌شود.[۱۲][۱۳]

    کراکینگ با بخار آب

    در یک فرآیند اصلاح شده، که کراکینگ با بخار آب نامیده می‌شود، هیدروکربن را با بخار آب رقیق می‌کنند، به مدت کسری از ثانیه تا (۹۰۰-۷۰۰ سانتی گراد) گرما می‌دهند و به سرعت سرد می‌کنند. کراکینگ با بخار در تولید مواد شیمیایی هیدروکربنی، از جمله اتیلن، پروپیلن، بوتادی ان، ایزوپرن و سیکلو پنتا دی ان، اهمیت فراوان دارد.[۱۱]

    کراکینگ با هیدروژن یا هیدرو کراکینگ

    طرحی از یک واحد هیدرو کراکینگ
    نوشتار اصلی: هیدروکراکینگ


    هیدروکراکینگ یک فرآیند شیمیایی کاتالیستی است. در فرآیند پالایش نفت خام از این روش برای تبدیل نفت خام به مواد با ارزش‌تر مانند: بنزین، سوخت جت، نفت سفید و سوخت دیزل استفاده می‌شود. این فرآیند در دماهای بالا ( ۴۲۵–۲۶۰ سانتی گراد) و فشار بالا ( ۱۷-۷ مگاپاسکال) انجام می‌شود. این فرآیند شامل دو مرحله می‌باشد: کراکینگ کاتالیستی و هیدروژناسیون. که در طی این مراحل خوراک ورودی، در حضور هیدروژن به محصولات با ارزش افزوده بیشتر شکسته می‌شود. این فرایند در فشار و دمای بالا و با حضور کاتالیست و هیدروژن انجام می‌شود.

    هیدروکراکینگ برای خوراک‌هایی مورد استفاده واقع می‌شود که فرایندهای کراکینگ کاتالیستی یا تبدیل کاتالیستی در مورد آن‌ها به سختی انجام می‌گیرد مانند نفت خامی که غنی از آروماتیک‌های پلی‌سیکلیک بوده یا حاوی غلظت‌های بالای ترکیبات گوگرد و نیتروژن که مسموم‌کننده کاتالیست‌ها هستند، می‌باشد[۱۴][۱۵]

    کراکینگ کاتالیزوری

    کراکینگ بیشتر در جهت تولید سوخت بکار گرفته می‌شود، نه در جهت تولید مواد شیمیایی و برای این منظور، کراکینگ کاتالیزوری مهمترین فرایند است. برش‌هایی از نفت را که دمای جوش بالا دارند(نوعا گازوئیل)، در (۵۵۰-۴۵۰ سانتی گراد)، با ذرات ریز سیلیس-آلومین و زیر کمی فشار، مجاور می‌سازند. کراکینگ کاتالیزوری نه تنها با شکستن مولکولهای کوچکتر بازده بنزین را افزایش می‌دهد، بلکه کیفیت بنزین را نیز بالا می‌برد. این فرایند مستلزم تشکیل کربوکاتیونهاست و آلکانهایی با ساختارهای بسیار شاخه دار به وجود می‌آورد که در بنزین به آنها نیازمندیم.[۱۱]

    • کراکینگ کاتالیزوری بستر سیال
    طرح واره‌ای از یک واحد کراکینگ کاتالیزوری بستر سیال(FCC) که در پالایشگاه‌های نفت به کار می‌رود.
    یک واحد کراکینگ کاتالیزوری بستر سیال(FCC)

    فرآیند کراکینگ کاتالیزوری بستر سیال(به انگلیسی: Fluid Catalytic Cracking) به صورت مخفف FCC از فرآیندهای مهم در پالایشگاه‌های نفت محسوب می‌شود، چرا که این روش فرآیند اصلی تولید بنزین محسوب می‌شود.این نوع از کراکینگ اولین بار در سال ۱۹۴۲ در پالایشگاه (Baton Rouge refinery) استفاده شد.همانند روش‌های دیگر کراکینگ، هیدروکربن‌های پیچیده و بزرگ که باقیمانده ی واحدهای دیگر پالایشگاهی هستند، به عنوان خوراک برای فرآیند FCC به کار می‌رود.محصولات این فرایند نیز برش‌های سبکتری مانند:بنزین، گاز مایع(LPG) و مواد اولیه واحدهای پتروشیمی است. فرآیند کراکینگ کاتالیزوری بستر سیال شامل دو بخش اصلی می‌باشد:

    همچنین در انتها یک برج جدا سازی[واژه‌نامه ۱۰] برش‌های شکسته شده را با توجه به نقطه جوش آنها جدا می‌کند. در داخل راکتور واکنش شکستن هیدروکربن‌ها که واکنشی گرماگیر است، انجام می‌شود و در احیاگر نیز کاتالیزورهای غیر فعال شده مجددا احیا می‌شوند. کاتالیزور مورد استفاده در این روش عمدتا زئولیت بوده و به صورت پودر در فرآیند به کار می‌رود.[۱۶] در این روش کاتالیزور بین راکتور و احیاگر به صورت مداوم در حال گردش است و عامل انتقال کاتالیزور نیز هوا، بخارات هیدروکربن و یا بخار آب است.

    در بخش راکتور ابتدا مخلوط هیدروکربن‌ها گرم شده تا بخار شوند سپس با جریانی از کاتالیزورهای احیا شده که از احیاگر می‌آید و جریان برگشتی ترکیب شده و از طریق رایزر[واژه‌نامه ۱۱] به راکتور منتقل می‌شود.دمای داخل راکتور (۹۰۰-F۱۰۰۰) است. در هنگامی که مخلوط در حال بالا رفتن از رایزر است، هیدروکربن‌ها در فشار (۱۰-psi۳۰) شکسته می‌شوند.در روش‌های مدرن تر FCC تمام فرآیند شکسته شدن مولکول‌ها در رایزر رخ می‌دهد.در قسمت بالای راکتور دستگاه جداساز گاز از جامد یا سیکلون[واژه‌نامه ۱۲] کاتالیزورهای غیر فعال را به بخش احیاگر فرستاده و بخارات هیدروکربن‌های شکسته شده را از بالای راکتور به برج جداسازی می‌فرستد.

    در بخش احیاگر کاتالیزورهای مصرف شده دوباره احیا شده و قابل استفاده در راکتور می‌شوند.علت اصلی غیر فعال شدن کاتالیزورها در این روش رسوب لایه‌ای از کک بر روی کاتالیزور است.به منظور از بین بردن این کک‌های رسوب کرده در بخش احیاگر از قسمت پایین هوای داغ به داخل دمیده می‌شود تا کک موجود روی سطح کاتالیزور با هوا سوخته شده و از بالای احیاگر خارج شود و کاتالیزورهای فعال شده نیز مجددا برای انجام واکنش به راکتور بر می‌گردد.این فرآیند چرخشی به طور مداوم انجام می‌شود. فرآیند سوختن کک روی کاتالیزورها علاوه بر فعال کردن کاتالیزگر، گرمای مورد نیاز برای تبخیر خوراک و انجام واکنش شکست در داخل راکتور مورد استفاده قرار می‌گیرد. در بالای احیاگر نیز مانند راکتور دستگاه سیکلون، گازهای ناشی از سوختن کک را به بالای احیاگر هدایت کرده و کاتالیزورهای احیا شده را دوباره به راکتور بر می‌گرداند. هیدروکربن‌های شکسته شده پس از خروج از راکتور وارد برج جداسازی می‌شود و براساس دمای جوش از یکدیگر جدا می‌شوند.[۱۷][۱۸][۱۹][۲۰]

    کاربردهای فناوری نانو در کراکینگ کاتالیزوری

    کاتالیست‌های مورد استفاده در واحدهای کراکینگ، عموماً مواد جامد مانند زئولیت‌ها، هیدروسیلیکات آلومینیوم، بوکسیت و سیلیکا-آلومینا می‌باشد، لذا می‌توان از ساختارهای نانوکاتالیست‌های فوق استفاده کرد. علاوه بر آن به دلیل اینکه از فلزات فعال پلاتین (Pt) و رنیوم (Re) روی پایه‌های آلومینا و زئولیت نیز استفاده می‌شود، می‌توان به نانوذرات Pt-Re کاتالیستی اشاره کرد. از دیگر کاتالیست‌های مورد استفاده مخلوط سیلیکا-آلومینا یا سیلیکا-مگنزیا (اکسید منیزیم) می‌باشد که نانوکاتالیست‌های سیلیکا و مگنزیا ساخته شده‌اند.[۲۱]

    محصولات جانبی فرآیند

    همانطور که در سازوکار فرآیند دیده می شود،علاوه بر آلکان های کوچکتر حاصل،برخی از هیرو کربن های آروماتیک و یا آلیفاتیک تولید می شوند.ولی مهم ترین محصول جانبی این فرآیند دوده یا کک است.این ماده که به طور عمده از کربن تشکیل شده است ،هم در کراکینگ گرمایی و هم در کراکینگ کاتالیزوری و بر روی کاتالیزگر ها تشکیل می شود.دوده جز مواد پر کاربرد و در عین حال ارزان قیمت است که در صنایعی چون لاستیک سازی و رنگ سازی به عنوان رنگدانه سیاه کاربرد دارد.[۲۲]

          

    mohamad بازدید : 734 شنبه 23 فروردین 1393 نظرات (0)

                                                           به نام خدا              محمد غلامی پستکی ملاصدرا 06  آقای سلامی                           عنوان پلی اتیلن_پلیمر                   

    پلی‌اتیلن

    از ویکی‌پدیا، دانشنامهٔ آزاد
    پلی‌اتیلن
    شناساگرها
    CAS 9002-88-4 Yes
    KEGG C19503 Yes
    MeSH Polyethylene
    تمامی داده‌ها مربوط به شرایط استاندارد(در  °C۲۵ و  kPa۱۰۰) است، مگر آنکه خلاف آن ذکر شده باشد.
    Infobox references
    پلی‌اتیلن گرانول

    پلی‌اتیلن‌ها خانواده‌ای از گرمانرم‌ها می‌باشند که از طریق پلیمریزاسیون گاز اتیلن ( C۲H۴ ) بدست می‌آیند . از طریق کاتالیست و روش پلیمریزاسیون این ماده می‌توان خواص مختلفی همچون چگالی، شاخص جریان مذاب (MFI)، بلورینگی، درجه شاخه‌ای و شبکه‌ای شدن، وزن مولکولی و توزیع وزن مولکولی را در آنها کنترل کرد. پلیمرهای با وزن مولکولی پائین را به عنوان روان کننده(Lubricant) به کار می‌برند. پلیمرهای با وزن مولکولی متوسط واکس‌هایی امتزاج پذیر (مخلوط پذیر) با پارافین می‌باشند و نهایتاً پلیمرهایی با وزن مولکولی بالاتر از ۶۰۰۰ در صنعت پلاستیک بیشترین حجم مصرف را به خود اختصاص می‌دهند. پلی اتیلن شامل ساختار بسیار ساده‌ای است، به طوری که ساده تر از تمام پلیمرهای تجاری می‌باشد . یک مولکول پلی اتیلن زنجیر بلندی از اتم‌های کربن است که به هر اتم کربن دو اتم هیدروژن چسبیده‌است .

    گاهی اوقات به جای اتم‌های هیدروژن در مولکول(پلی اتیلن)، یک زنجیر بلند از اتیلن به اتم‌های کربن متصل می‌شود که به آنها پلی اتیلن شاخه‌ای یا پلی اتیلن سبک (LDPE) می‌گویند؛ چون چگالی آن به علت اشغال حجم بیشتر، کاهش یافته‌است. در این نوع پلی اتیلن مولکولهای اتیلن به شکل تصادفی به یکدیگر متصل می‌شوند و ریخت و شکل بسیار نامنظمی را ایجاد می‌کنند. چگالی آن بین ۹۱۰/۰ تا ۹۲۵/. است و تحت فشار و دمای بالا و اغلب با استفاده از پلیمریزاسیون رادیکال‌های آزاد وینیلی (Free radical polymerization) تولید می‌شود. البته برای تهیهٔ آن می‌توان از پلیمریزاسیون زیگلر ناتا (Ziegler-Natta polymerization)نیز استفاده کرد.

    • وقتی هیچ شاخه‌ای در مولکول وجود نداشته باشد آن را پلی اتیلن خطی می‌نامند. پلی اتیلن خطی سخت تر از پلی اتیلن شاخه‌ای است اما پلی اتیلن شاخه‌ای آسانتر و ارزانتر ساخته می‌شود. ریخت و شکل این پلیمر بسیار کریستالی شکل است. پلی اتیلن خطی محصول نرمالی با وزن مولکولی ۲۰۰۰۰۰-۵۰۰۰۰۰ است که آن را تحت فشار و دماهای نسبتاً پائین پلیمریزه می‌کنند. چگالی آن بین ۹۴۱/۰ تا ۹۶۵/۰ است و آن را بیشتر به وسیلهٔ فرایند مشکلی که پلیمریزاسیون زیگلر ناتا نامیده می‌شود، تهیه می‌کنند. شکل این پلی اتیلن را در تصویر بالا می‌توانید مشاهده کنید.
    • پلی اتیلنی نیز وجود دارد که چگالی آن مابین چگالی این دو پلیمر است یعنی در محدودهٔ ۹۲۶/۰ تا ۹۴۰/۰؛ و آن را پلی اتیلن نیمه سنگین یا پلی اتیلن متوسط می‌نامند.
    • پلی اتیلن با وزن مولکولی بین ۳ تا ۶ میلیون را پلی اتیلن با وزن مولکولی بسیار بالا یا UHMWPE می‌نامند و با پلیمریزاسیون کاتالیست متالوسن تولید می‌کنند. مادهٔ مزبور فرایند پذیری دشوارتری برخوردار بوده ولی خواص آن عالی است. هنگامی که از طریق تشعشع یا استفاده از مواد افزودنی شیمیایی، این پلیمر تماماً شبکه‌ای شود، پلی اتیلن یاد شده دیگر گرما نرم نخواهد بود. این ماده با پخت حین قالب گیری یا بعد از آن یک گرما سخت واقعی با استحکام کششی، خواص الکتریکی و استحکام ضربهٔ خوب در دامنهٔ وسیعی از دماها خواهد بود. از آن برای ساخت فیبرهای بسیار قوی استفاده می‌کنند تا جایگزین کولار (نوعی پلی آمید)در جلیقه‌های ضد گلوله کنند؛ و همچنین صفحات بزرگ آن را می‌توان به جای زمین‌های اسکیت یخی استفاده کرد.
    • به وسیلهٔ کوپلیمریزاسیون مونومراتیلن با یک مونومر آلکیل شاخه دار، کوپلیمری با شاخه‌های هیدروکربن کوتاه بدست می‌آید که آن را پلی اتیلن خطی با چگالی کم یا LLDPE می‌نامند و از آن اغلب برای ساخت اشیاءای شبیه فیلم‌های پلاستیکی ( کسیه فریزر ) استفاده می‌کنند.

    پلی اتیلن در یک نگاه

    موارد استفاده : به صورت ترموپلاستیک، الیاف، لوله، فیلم و ...

    مونومر : اتیلن

    روشهای پلیمریزاسیون : زنجیر رادیکالی آزاد

    ریخت‌شناسی : بسیار بلورین(پلی اتیلن خطی)، بی نظم(آمورف) با درصد تبلور پایین (پلی اتیلن شاخه‌ای)

    دمای ذوب : در حدود ۱۲۰-۱۳۰ درجه سانتیگراد

    دمای انتقال شیشه‌ای : در حدود ۸۰- درجه سانتیگراد( با توجه به درصد تبلور پلیمر تغییر می‌کند)

    کاربرد

    نصب یک لوله از جنس پلی اتیلن سنگین برای یک پروژه جمع آوری فاضلاب در مکزیک

    پلی‌اتیلن کاربرد فراوانی در تولید انواع لوازم پلاستیکی مورد استفاده در آشپزخانه و صنایع غذایی دارد. از LDPE در تولید ظروف پلاستیکی سبک و همچنین کیسه‌های پلاستیکی استفاده می‌شود. HDPE ، در تولید ظروف شیر و مایعات و انواع وسایل پلاستیکی آشپزخانه کاربرد دارد. در تولید لوله‌های پلاستیکی و اتصالات لوله‌کشی معمولاً از MDPE استفاده می‌کنند.

    LLDPE بدلیل بالا بودن میزان انعطاف‌پذیری در تهیه انواع وسایل پلاستیکی انعطاف‌پذیر مانند لوله‌هایی با قابلیت خم شدن کاربرد دارد. اخیراً پژوهش‌های فراوانی در تولید پلی اتیلن‌هایی با زنجیر بلند و دارای شاخه‌های کوتاه انجام شده است. این پلی اتیلن‌ها در اصل HDPE با تعدادی شاخه‌های جانبی هستند. این پلی اتیلن‌ها ترکیبی ، استحکام HDPE و انعطاف‌پذیری LDPE را دارند.

    برخی ویژگیهای پلی اتیلن

    مهم‌ترین ویژگی‌های ذاتی پلی اتیلن‌های تجاری برای کاربردهای اصلی عبارت‌اند از:

    ۱) چگالی ۲) نمایهٔ مذاب ۳) توزیع وزن مولکولی

    چگالی

    همان طور که قبلاً اشاره شد چگالی انواع پلی اتیلن‌ها در محدودهٔ 0.910 تا 0.965 دارد و علت اینکه آن را تا سه رقم اعشار ذکر می‌کنند این است که 0.003 تغییر در چگالی باعث تغییر قابل توجه‌ای در ویژگی‌ها می‌شود. به طور کلی با افزایش چگالی، خطی بودن، سفتی، استحکام کششی، استحکام پارگی، دمای نرم شدن، شکنندگی، عمر خمشی، تمایل به ترک برداشتن افزایش می‌یابد. پلی اتیلن‌ها بسته به چگالی، به چهار گونه پلی اتیلن با چگالی کم (LDPE)، پلی اتیلن با چگالی کم خطی (LLDPE)، پلی اتیلن با چگالی متوسط (MDPE) و پلی اتیلن با چگالی زیاد (HDPE) تقسیم می‌شوند.

    نمایه مذاب یا شاخص جریان مذاب Melt Flow Index) MFI)

    کاربردی‌ترین نشانهٔ ارتباط دهندهٔ ویژگی‌های پلی اتیلن به متوسط وزن مولکولی است. نمایهٔ مذاب وزن (گرم) پلی اتیلنی است که در عرض ده دقیقه از میان یک روزنهٔ ثابت در دمای ۱۹۰ درجه سانتیگراد بیرون می‌آید، و این در حالی است که وزنهٔ استانداردی بر روی پیستون محفظهٔ رانش که حاوی سه گرم پلی اتیلن است، قرار دارد. نمایهٔ مذاب تا حدودی (اما نه دقیق ) نسبت معکوس با گرانروی مذاب دارد. بنابر این با افزایش وزن مولکولی متوسط، کاهش می‌یابد. نمایهٔ مذاب بیشتر، نشان دهندهٔ روانی بیشتر در دماهای فرآورش است. این نماد در اصل برای نشان دادن ویژگی‌های سیلانی (روانی) به عنوان معیاری از قابلیت اکسترود شدن است. به طور کلی با افزایش نمایهٔ مذاب، استحکام کششی، مقاومت پارگی، دمای نرم شدن و چقرمگی پلی اتیلن کاهش می‌یابد.

    توزیع وزن مولکولی

    توزیع وزن مولکولی (Mw/Mn) نیز اثر بارزی بر روی ویژگیها دارد. با افزایش نسبت Mw/Mn استحکام کششی، دمای نرم شدن و چقرمگی کاهش می‌یابد و شکنندگی و تمایل به ترک برداشتن افزایش می‌یابد.

     

    تعداد صفحات : 2

    درباره ما
    Profile Pic
    داریوش سلامی ..................................................................................... کارشناسی ارشد شیمی فیزیک................................................................... دبیرشیمی ناحیه1رشت .......................................................................... .shimisalami@yahoo.com ................................................................ شیمی یکی از مهمترین علوم پایه است که نقش کلیدی در زندگی بشر امروزی دارد و هر جنبه از زندگی ما ارتباط نزدیکی با این علم دارد.
    اطلاعات کاربری
  • فراموشی رمز عبور؟
  • نظرسنجی
    به سایت نمره بدهید.
    پیوندهای روزانه
    صفحات جداگانه
    آمار سایت
  • کل مطالب : 1015
  • کل نظرات : 183
  • افراد آنلاین : 1
  • تعداد اعضا : 461
  • آی پی امروز : 87
  • آی پی دیروز : 172
  • بازدید امروز : 139
  • باردید دیروز : 263
  • گوگل امروز : 0
  • گوگل دیروز : 12
  • بازدید هفته : 2,432
  • بازدید ماه : 1,375
  • بازدید سال : 48,786
  • بازدید کلی : 1,541,414
  • کدهای اختصاصی