loading...
شیــمـی سـلــامـــی/ شیمی دبیرستان
آخرین ارسال های انجمن
saman77 بازدید : 401 یکشنبه 07 اردیبهشت 1393 نظرات (0)

 

 

به نام ایزدمنان

 

 

موضوع:رنگها

گردآورنده:محمّدیوسفی

معلم مربوطه:آقای سلامی

کلاس دوم تجربی

 

 

 

 

دبیرستان شهیدرجایی1

 

 

رنگها

 

رنگ یک ماده مهندسی میباشد، اما برخلاف بعضی از مواد مهندسی یک ماده ساده نیست، یا حتی نمی توان آن را به سادگی به صورت دسته ای از مواد تعریف کرد. رنگ می تواند از هزاران ماده شیمیایی طبیعی و مصنوعی آلی و معدنی تشکیل شود. تهیه فیلمهائی از رنگ که تاثیرات مطلوب را به همراه داشته باشند مستلزم به کارگیری استادانه انواع بسیاری از تکنیکهای مهم با استفاده از مواد اولیه می باشد

بدون شک هرگاه شخصی مواد خامی را که امروزه تهیه کنندگان پوششهای آلی مورد استفاده قرار می دهند با مواد مصرفی 40 سال قبل مقایسه کند از افزایش تعداد وانواع آنها متحیرخواهد شد.

درحقیقت تعداد بی شماری رزین مصنوعی، روغن و رقیق کننده با انواع وسیعی از رنگدانه های معدنی و آلی وجود دارند که می توان در ساخت یک پوشش آلی از آنها استفاده کرد. بنابراین، می توان گفت که ساده ترین پوشش ساخته شده در حقیقت یک سیستم پیچیده است.

یک رنگ برای مصرف کننده نهائی باید دارای خصوصیاتی از قبیل سهولت استعمال، خشک شدن سریع و عدم سینه دادن، ته نشین شدن، جداشدن رنگدانه ها، ژل شدن، پوسته زدن و در نهایت پایداری هنگام نگهداری را دارا باشد. افزودن مقدار کمی از ترکیباتی به غیر از ترکیبات معمولی و اصلی رنگ، برای دستیابی به خواص عملی مطلوب، به دورانهای اولیه صنعت برمیگردد. در طول دوران صنعت تاکنون ترکیباتی از قبیل صابونها، چسبها،سفیده تخم مرغ، صمغهای طبیعی و نوعی از آسفالت به نام گیلسونت همواره برای این منظور مورد استفاده قرار می گرفته است. امروزه، با وجود این که هنوز تعدادی از این مواد مورد استفاده قرار می گیرند، اما مصرف مواد اضافه شونده مصنوعی رو به افزایش نهاده است. در یک عبارت کلی، هر یک از اجزای سازنده رنگ، در حقیقت، یک ماده اضافه شونده است. سازنده های رنگ به دو دسته تقسیم می شوند: قسمت اول شامل آن دسته از مواد میباشد که برای یک رنگ اساسی هستند و قسمت دوم شامل موادی که به منظور بهبود و اصلاح طبیعت و کیفیت رنگ، سهولت روشهای استعمال آن، یا بعضی هدفهای دیگر مورد استفاده قرار می گیرند.

یک رنگ متشکل از رنگدانه، رزین، حلال، خشک کن یا ماده سخت کننده میباشد. با وجود این، هیچ لزومی ندارد که همواره تمام این مواد در یک رنگ وجود داشته باشند. برعکس در اغلب رنگها، مواد اولیه فوق برای به وجود آوردن یک ماده پوشش دهنده نهائی به تنهائی کافی به نظر نمی رسند. اما به هر حال این مواد جزء مواد اصلی رنگ به شمار می روند.

یک فرمول کننده رنگ می تواند از مواد اضافه شونده به عنوان ابزار اساسی برای اصلاح و بهبود پوششها استفاده کند. در صورت استفاده صحیح از مواد اضافه شونده فرمول کننده رنگ می تواند، بدون هیچگونه افزایش در قیمت رنگ، و یا حتی با کاهش دادن آن بدون کاهش کیفیت، رنگی با بالاترین کیفیت را تولید نماید. بنابراین، مواد اضافه شونده یک جزء لازم از پوششها را تشکیل می دهند.

مواد اضافه شونده در رنگ ها

انواع مواد اضافه شونده به رنگ ها که استفاده قرار می گیرند، عبارتند از:خشک کن ها ، مواد ضد پوسته، مواد تعدیل کننده گرانروی و مواد ضد رسوب، ضد سینه دادن، مواد پخش کننده، موادی که کمک به همتراز شدن سطح فیلم رنگ می کنند ، مواد بازدارنده خوردگی ، مواد ضد کپک یا باکتری ، مواد ضد خزه یا ضد جلبک ، موتد ضد کف یا کف زدا ، مواد ضد یخ ، مواد جاذب نور فرابنفش ، مواد کند کننده آتش سوزی ، مواد خوشبو کننده و بو زدا ، مواد مقاوم کننده فیلم رنگ در مقابل رطوبت ، موادی که باعث افزایش نقش چکشی رنگهای چکشی می شوند ، مواد کنترل کننده برق فیلم رنگ (مواد مات کننده) و مواد نرم کننده.

 

خشک کنها

به طور کلی زمانی که فیلم یک رنگ خشک می شود مراحل زیر اتفاق می افتد:

1-تبخیر مواد فرار: این عمل به ترتیب باعث می شود که:

مایع رنگ غلیظ شود؛

جدائی فاز صورت گیرد(ژلاتینی شدن یا بلور شدن)؛

فشارهای حاصل از انقباض فیلم موجب فشرده شدن دانسیته فیلم گردد؛

رنگ بر روی شیء پخش گردد و آن را مرطوب سازد تا سطح چسبنده ای بین شیء و رنگ ایجاد شود؛

پوسته فیلم کشیده شده و مولکولهائی که در سطح تماس با هوا واقعند دوباره سازمان دهی شوند؛

رنگدانه ها ته نشین و یا غوطه ور شوند.

2-جذب اکسیژن و سایر گازها از هوا: در بسیاری از موارد در خلال جذب اکسیژن واکنشهائی صورت می گیرد که باعث می شود تعداد نسبتا کمی از مولکولها به منومترهای قابل پلیمر شدن تبدیل گردند.

3-مولکولهای کوچکتر مولکولهای بزرگتر را تشکیل می دهند، و در این میان واکنشهای حلقوی صورت می گیرد.

4-ممکن است جدائی فاز صورت گیرد: که در آن مولکولهای پیچیده نامحلول به صورت ذرات امولسیونی کوچک(یا میکرو ژلها) جدا شده و به شکل کلوئیدی در فاز مایع معلق می شوند. مایع پیوستگی خود را به عنوان یک محیط معلق کننده برای کلوئید حفظ می کند، زیرا هنوز مولکولهائی از ذرات همنوع و غیر همنوع وجود دارند که از نظر مولکولی در یک مخلوط بی نظم قابل مخلوط کردن با یکدیگر میباشند تا یک مایع بی شکل را بوجود آورند.

5-ژلاتینی شدن: که نمایانگر آخرین مرحله خشک شدن فیلم رنگ می باشد و آن را مرحله دگرگونی فاز نیز می نامند. در این مرحله ذرات پراکنده یک شبکه به هم پیوسته را تشکیل می دهند، و به این ترتیب جامد خلل و فرج داری بوجود می آید که در حقیقت بخشی از فیلم خشک شده رنگ میباشد، و مایع باقیمانده در درون فضاهای خالی این جامد جای می گیرد. گاهی اوقات قبل از اینکه تمام حلال تبخیر شده باشد ژلاتینی شدن اتفاق می افتد یا ممکن است این عمل تا زمانی که بخش اعظمی از حلال تبخیر و اکسیداسیون بیشتری انجام شود صورت نگیرد.

در بعضی از انواع پوششهای آلی برای تسریع خشک شدن فیلم رنگ از موادی استفاده می شود که آنها را خشک کن می نامند. خشک کنها را می توان به عنوان کاتالیزورهائی تعریف کرد که وقتی به رنگ افزوده می شوند باعث تسریع در خشک شدن یا سخت شدن فیلم رنگ می گردند. بضی ها خشک کنها را به عنوان«قاصدانی» تعریف کرده اند که مولکولهای اکسیژن هوا را می ربایند و آنها را به مولکولهای روغن خشک شونده یا نیمه خشک شونده به کار رفته در ساختمان مولکولی رنگپایه رنگ می رسانند و همین مراحل دوباره تکرار می شود تا اکسیژن بیشتری به مولکولهای روغن برسد.

 

ضد پوسته ها

زمانی یک فیلم قابل استفاده و عرضه به بازار خواهد بود که بتواند حداقل فیلمی با شرایط مورد نظر تشکیل داده و در زمان مناسب خشک شود. برای ارائه فرمول یک رنگ زمان، انرژی و تلاش بسیاری صرف می شود تا با تعیین نوع و مقدار صحیح از یک یا چند خشک کننده رنگی با بهترین خواص خشک شوندگی تهیه شود. منظور از بهترین خواص خشک شوندگی در یک رنگ آن است که در هنگام استعمال رنگ بر روی سطح پس از آنکه به صورت فیلم درآمد در زمان مناسب همراه با ایجاد بهترین خصوصیات فیزیکی خشک شود. بنابراین، هرگاه رنگ در زمان و مکانی به غیر از زمان و مکان استعمال آن خشک شود، مورد قبول نخوهد بود و این همان پوسته بستن رنگ، از جمله عیوب مهم آن میباشد.

به طور کلی، پوسته بستن رنگ مربوط به تمایل پلیمر شدن و اکسایش رنگپایه های مصرفی در پوششهای محافظت کننده میباشد که موجب خشک شدن رنگ می گردد. ما می خواهیم که رنگ پس از استعمال بر روی سطح خشک شود. و به همین منظور به آن خشک کن اضافه می کنیم. در بعضی فرمول بندیها نه تنها از این طریق به خشک شدن کلی فیلم رنگ دست می یابیم، بلکه یک خشک شدن سطحی سریع نیز در رنگ ایجاد می شود که موجب تشکیل یک پوسته نازک بر روی سطح رنگ می گردد. اگر بخواهیم برای جلوگیری از پوسته بستن مقدار خشک کن را کم کنیم، تنها زمان خشک شدن را افزایش داده ایم نه اینکه از پوسته بستن جلوگیری کرده باشیم. این مسئله مخصوصا در پوششهای سریع خشک شونده آشکار میباشد. البته لازم به تذکر است که مسئله پوسته بستن رنگ همیشه جزء عیوب رنگ نیست، بلکه در بعضی رنگهای تجارتی که باید پس از خشک شدن، فیلم آنها چین و چروک دار باشد مسئله پوسته بستن از اهمیت به سزائی برخوردار خواهد بود.

می توان گفت که طبیعت اجزای متشکله یک رنگ در کارآئی آن، از جمله پوسته بستن، از اهمیت خاصی برخوردار است. همچنین علاوه بر طبیعت اجزای متشکله رنگ، میزان هر یک از آنها نیز در پیدایش خصوصیات مثبت و منفی رنگ موثر هستند. برای مثال، وقتی که در یک رنگ میزان خشک کنهای مصرفی بیش از حد معمول باشد، موجب شدت پوسته بستن رنگ می گردد. از طرف دیگر وجود حلالهای شدیدا فرار رنگی که درب قوطی آن محکم بسته شده و کاملا به دور از هوا میباشد، امکان تشکیل پوسته را به حداقل کاهش میدهد. البته هرگونه کاهشی در گرانروی سیستم رنگ نیز موجب کاهش تمایل به پوسته بستن می گردد، همانطوریکه هرگونه کاهشی در درصد مواد جامد رنگپایه نیز این کار را انجام میدهد.

از میان عواملی که موجب پوسته بستن رنگ می گردند می توان به موارد زیر اشاره کرد:

1-اکسایش سطح رنگ در ظرف محتوی آن

2-ژل شدن رنگ در اثر کاهش حلال؛

ترکیبی از دو مورد 1 و 2 که موجب به هم خوردن موازنه کلوئیدی رنگ می گردد.

بهترین راه برای جلوگیری از پوسته بستن افزودن مواد ضد اکسایش به رنگ میباشد. این گونه مواد بدون آنکه اثر سوئی بر روی خواص مطلوب رنگ داشته باشند، اثرات زیان بار اکسایش زود هنگام رنگ را خنثی می سازند. بسیاری از چربیها و روغنهای چرب به طور طبیعی حاوی مواد ضد اکسایش می باشند و در نتیجه از نظر پوسته بستن مسئله ای را ایجاد نمی کنند. اما در موادی که مقدار این مواد در حد کافی نباشد باید از مواد افزودنی دیگر استفاده کرد.

در ارزیابی و انتخاب یک ماده ضد پوسته علاوه بر چگونگی عملکرد آن در جلوگیری از پوسته بستن، چندین عامل دیگر نیز در نظر گرفته می شود که عبارتند از:

1-میزان تاثیر آن در کند کردن زمان خشک شدن؛

2-سازگاری با سیستمهای رنگ و جلا؛

3-میزان تاثیر آن در تغییر رنگ یا بد رنگ کردن فیلم خشک شده؛

4-میزان تاثیر آن در تغییر رنگ یا بد رنگ کردن اجزای مایع جلا؛

5-بو

علاوه بر این ، یک ماده ضد پوسته نباید هیچ گونه اثر زیان آوری بر روی گرانروی یا سایر خواص رئولوژیکی رنگ، چه در ابتدا و چه در خلال زمان انبار کردن،داشته باشد. همچنین، ماده ضد پوسته نباید اثر ناخواسته و نامطلوبی بر روی براقیت و دوام کلی فیلم رنگ بگذارد.

کارآئی ضد پوسته های مختلف با نوع رنگپایه ای که ضد پوسته در آن مورد استفاده قرار می گیرد، فرق می کند. مواد ضد پوسته را می توان به سه دسته تقسیم کرد:

1-اکسیم ها

2-پلی هیدروکسی فنلها و مشتقاتش

3-موادی از نوع حلالها که به عنوان یک ماده دیسپرس کننده محصولات شدیدا پلیمری عمل کرده و در نتیجه مانع ژل شدن ذرات می گردند.

 

مواد تعدیل کننده گرانروی و مواد ضد رسوب:

فرمول بندی رنگ ممکن است موجب تولید رنگهائی شود که بیش از حد سیال و روان باشند. رنگ مایعی که گرانروی آن پائین باشد ممکن است سیالیت آن بیش از حد لزوم برای مقصود نهائی باشد، هر چند سیالیت زیاد در شرایط ممکن است بسیار سودمند هم باشد. بنابراین گرانروی پائین در رنگین کننده ها، بتونه ها و لاکهای اسپری ممکن است مطلوب باشد ولی در پوششهائی که فیلم خشک شده آنها ضخامت بالائی دارد و همچنین رنگهائی که به وسیله قلم مو مصرف می شوند، چنین نمی باشند. در رنگهای با گرانروی پائین، رسوب رنگدانه ها در خلال مدت نگهداری، بخصوص اگر رنگدانه ها بهم فشرده باشند،اتفاق می افتد. این رسوب سنگین ممکن است در دیسپرسیون مجدد نیز اشکالاتی تولید کند. این اشکالات مربوط به روانی و سیالیت و رسوب رنگدانه را می توان با تنظیم گرانروی رنگ از بین برد. به وسیله انتخاب صحیح رنگدانه ها می توان کنترلهای بیشتری برای جلوگیری از رسوب بکار برد

گرانروی رنگ می تواند به وسیله افزودن مواد ضخیم کننده و غلیظ کننده افزایش داده شود، (یعنی سیالیت و روانی رنگ کم شود)، بدون اینکه حالت تیکسوتروپی در رنگ به وجود بیاید. عوامل ایجاد کننده حالت تیکسوتروپی، به رنگ ساختمان ژل مانندی می دهد. این حالت ژل مانند برای بسیاری از رنگهائی که به وسیله قلم مو مصرف می شوند، مفید است زیرا که از سینه دادن و شره کردن آن جلوگیری می نماید. این خاصیت نیز می تواند مسئله رسوب در مدت نگهداری را کاهش داده و یا بطور کلی از بین ببرد.

رنگهائی که حالت تیکسوتروپی دارند در تمام کاربردها مطلوب نیستند، برای مثال وقتی سیالیت خوب مورد نظر است، در این موقع نیز رسوب رنگدانه ها را می توان با مواد ضد رسوب یا فعال کننده سطح مانند سویالستین در حدود 1 درصد فرمول بندی کاهش داد. مواد فعال کننده سطح به سطح رنگدانه جذب می گردد که در نتیجه باعث افزایش حجم و کاهش وزن مخصوص آن می شود. نتیجه نهائی کاهش میزان رسوب است. دیسپرسیون مجدد رنگدانه های رسوب کرده به وسیله استفاده از رنگدانه یارهای فعال شده تسهیل می گردد، که معمولا این رنگدانه یار، کربنات کلسیم به میزان 5 درصد وزن رنگدانه می باشد. ذرات این رنگدانه یارها به دلیل دارا بودن لایه سطح آلی بسیار پرحجم می باشد و در خلال رسوب ذرات بین ذرات رنگدانه مستقر می شوند. وقتی رنگ بهم زده می شود ذرات رنگدانه یار به شکستن تجمع رنگدانه کمک می کند و در نتیجه دیسپرسیون مجدد به راحتی انجام می شود.

بسیاری از مواد، گرانروی رنگ را افزایش می دهند و یا موجب بوجود آمدن حالت تیکسوتروپی در فرمول بندی می گردند. متداولترین انواع این مواد عبارتند از : اترهای سلولز، سیلیکاهای میکرونیزه ، پنتونیتها

 

مواد ضد کف و کف زدا

کف سیستمی متشکل از دو فاز گاز و مایع می باشد که فاز گاز در فاز مایع پخش شده است. هنگام کار با دستگاههای مخلوط کنی و پر کردن رنگ کف ایجاد می شود و این مسئله موجب کند شدن سرعت تولید، مسدود شدن پمپها و لوله ها و افزایش هزینه تولید رنگ می گردد. لذا، باید در زمان تولید رنگ موادی به آن افزود که بتوان یا مانع ایجاد کف شد و یا اینکه آن را از بین برد. این مواد را تحت عنوان «مواد ضد کف» و یا «مواد کف زدا» می شناسند اما از نظر دسته بندی کلی مواد افزودنی رنگ می توان آنها را جزء «مواد فعال کننده سطح» بشمار آورد.

انتخاب مناسبترین و موثرترین ماده کف زدا یا ضد کف یک مسئله نسبتاً مشکل می باشد، اما، قوانین زیر، هر چند که ثابت نیستند، می توانند کمک زیادی به این امر کنند:

1-کشش سطحی ضد کف باید از کشش سطحی محلول کف کننده کمتر باشد

2-ضد کف باید در محلول کف کننده قابلیت حلالیت پائینی داشته باشد

3-ضد کف باید با محلول کف کننده به آسانی پخش شود

4-ضد کف بایدب ا محلول کننده واکنشی انجام ندهد

5-ضد کف باید ضریب گسترش بالائی داشته باشد

6-ضد کف نباید اثرات زیان آوری در محصول نهائی ایجاد کند

7-در مواردی که داشتن بو یا مزه مهم باشد، ضد کف نباید بو یا مزه خاصی از خود بجای بگذارد

8-ضد کف نباید موجب تجمع رنگدانه و ناپایداری امولسیون شود

9-ضد کف باید با مخلوط کف کننده امتزاج پذیری خوبی داشته باشد تا از پیدایش معایبی از قبیل چشم ماهی شدن یا ژل شدن فیلم خشک نشده رنگ جلوگیری شود

10-ضد کف باید فعالیت خود را برای یک زمان طولانی حفظ کند.

لازم به تذکر استکه علاوه بر عوامل فوق، عوامل دیگری از قبیل گرانروی و سایر اجزای متشکله رنگ، دماف سرعت فرایند تولید نیز در کارائی ماده ضد کف یا کف زدا موثر هستند.

مهمترین مواد ضد کف یا کف زدای مصرفی سیلیکونها، بعضی الکلهای شش الی ده کربنه (مثلا تونیل الکل)، مشتقات پلی اتیلن اکساید و پلی پروپلین اکساید و بعضی از محصولات طبیعی مانند ترپنتین، روغن کاج و روغن پشم و غیره می باشد. از آنجا که خواص ضد کف در فرمول بندیهای گوناگون متفاوت است نوع و مقدار قابل استفاده هر یک از این مواد یکسان نیست. پیشنهاد می شود که برای استفاده از نوع و میزان مصرف هر یک از مواد ضد کف یا کف زدا از توصیه ها و اطلاعات سازندگان آنها کمک گرفته شود. معمولا سازندگان این گونه مواد درصد ماده فعال موجود در آنها را چنان تنظیم می کنند که حدود 1/0 تا 5/0 درصد از کل وزن رنگ را بخود اختصاص دهند.

آب بدلیل کشش سطحی و قطبیت بالا فاز مایع مناسبی برای ایجاد کف بشمار می آید، لذا در ساخت رنگهای امولسیونی استفاده از مواد ضد کف بسیار ضروری و مفید می باشد. رنگهای ساخته شده از رزینهای امولسیون آکریلیک ، پلی وینیل استات ، پلی وینیل الکل ، آلکید و کائوچو نیاز حتمی به اینگونه مواد دارند.

در صنعت رنگسازی تفاوت زیادی بین مواد ضد کف و کف زدا وجود ندارد و هر دو تحت یک عنوان به فروش می رسند. از مواد ضد کف در تولیداتی که هدف جلوگیری از تشکیل کف است استفاده می شود و در صورتی که مواد کف زدا هنگامی استفاده می شوند که منظور از بین بردن کف تولید شده است.

یکی از روشهای عمومی در صنعت رنگسازی این است که نصف مواد ضد کف مورد نظر را ضمن پخش کردن رنگدانه به مخلوط رنگ می افزایند تا از تشکیل کف جلوگیری شود. سپس بقیه مواد ضد کف را در مرحله همرنگ کردن رنگ جهت عدم تشکیل کف بیشتر در هنگام پرکردن قوطیها و استعمال رنگ اضافه می کنند. البته استفاده از دو نوع ماده ضد کف هم منطقی بنظر می آید، زیرا ممکن است یکی از آنها در شرایط سخت پخش رگدانه موثرتر باشد و دیگری در شرایط نگهداری طولانی مدت رنگ مفیدتر واقع شود.

 

 

 

saman77 بازدید : 436 یکشنبه 07 اردیبهشت 1393 نظرات (1)

 

 

به نام خداوندجان آفرین

 

 

 

موضوع:چسبها,انواع وکاربردآنها

 

گردآورنده:محمّدیوسفی

 

معلم مربوطه:جناب آقای سلامی

 

کلاس دوم تجربی

 

 

 

 

 

 

دبیرستان شهیدرجایی1

 

 چسب

ساخت و مصرف چسب از گذشته رایج بوده است. در قدیم ، از موادی چون قیر و صمغ درختان به عنوان چسب استفاده می‌کردند. در تمام قرون گذشته و همچنین قرن نوزدهم چسب‌ها منشاء حیوانی و یا گیاهی داشته‌اند. چسب‌های حیوانی بطور عمده بر مبنای کلوژن مامالیام Mammaliamبودند که پروتئین اصلی پوست ، استخوان و رگ و پی است و چسب‌های گیاهی از نشاسته و دکسترین دانه‌های گندم ، سیب زمینی و برنج تهیه می‌شدند

 

کاربردهای متنوع چسب‌

 

از قرن نوزدهم بتدریج با پیدایش چسب‌های سنتتیک ساخته شده در صنعت پلیمر ، چسب‌های سنتی و گیاهی و حیوانی از صحنه خارج شده است. صنعت چسب به صورت گسترده ای در حال رشد می‌باشد و تعداد محدودی وسایل مدرن ساخت بشر وجود دارد که از چسب در آنها استفاده نشده است. در اتصالات اغلب وسایل از یک جعبه بسیار ساده غلات گرفته تا هواپیمای پیشرفته بوئینگ 747 از چسب استفاده شده است

 

امکانات بشر می‌تواند بوسیله چسب‌ها اصلاح گردد. این مطلب ، شامل استفاده از سیمان‌های سخت شده توسط UV در دندانپزشکی و سیمان‌های پیوند

آکلریلیک در جراحی استخوان می‌باشد. پیشرفت جدیدی که اخیرا در کاربرد چسب حاصل گشت، اتصال ریل‌های فولادی و تراموای جدید شهر منچستر بود. چسب‌ها نه تنها برای موادی که بایستی چسبانده و بهم پیوسته شوند، بلکه در ایجاد چسبندگی برای موادی از قبیل جوهر تحریر ، رنگها و سایر سطوح پوششی ، وسایل بتونه کاری و وجوه میانی در مواد ترکیبی از قبیل فولاد یا بافت پارچه ، در تایرهای لاستیکی و شیشه‌ یا الیاف در پلاستیک‌ها ضروری هستند.

 

 

 

 

 

اجزای تشکیل دهنده چسب‌ها

 

مواد پلیمری

 

چسب‌ها ، همگی حاوی پلیمر هستند یا پلیمرها در حین سخت شدن چسب‌ها بوسیله واکنش شیمیایی پلیمر شدن افزایشی یا پلیمر شدن تراکمی حاصل می‌شوند. پلیمرها به چسب‌ها قدرت چسبندگی می‌دهند. می‌توان آنها را به صورت رشته‌هایی از واحدهای شیمیایی همانند که بوسیله پیوند کووالانسی به هم متصل شده‌اند، در نظر گرفت.

 

پلیمرها در دماهای بالا روان می‌گردند و در حلال‌های مناسب حل می‌گردند. خاصیت روان شدن آنها در چسب‌های حرارتی و خاصیت حل شوندگی آنها در چسب‌های بر پایه حلال ، یک امر اساسی می‌باشد. پلیمرهای شبکه‌ای در صورت گرم شدن جریان نمی‌یابند، ممکن است در حلال‌ها متورم گردند، ولی حل نمی‌شوند. تمامی چسب‌های ساختمانی ، شبکه‌ای هستند، زیرا این مورد خزش (تغییر شکل تحت بار ثابت) از بین می‌برد.

 

افزودنیهای دیگر:

 

بسیاری از چسب‌ها ، علاوه بر مواد پلیمری دارای افزودنیهایی هستند از قبیل:

مواد پایدار کننده در برابر تخریب توسط اکسیژن و UV

مواد نرم کننده که قابلیت انعظاف را افزایش می‌دهد و دمای تبدیل شیشه‌ای (Tg ) را کاهش می‌دهد

مواد پر کننده معدنی که میزان انقباض در سخت شدن را کاهش می‌دهد و خواص روان شدن را قبل از سخت شدن تغییر می‌دهد و خواص مکانیکی نهایی را بهبود می‌بخشد

مواد تغلیظ کننده

معرف های جفت کننده سیلانی

 

تئوریهای چسبندگی

 

درباره چسبندگی شش تئوری وجود دارد که عبارتند از:

 

تئوری جذب فیزیکی

جذب فیزیکی شامل نیروهای وان‌دروالسی در بین سطوح می‌باشد که در بر گیرنده جاذبه‌های بین دو قطبی‌های دائم و دو قطبی القایی و نیروهای لاندن می‌باشد.

 

تئوری جذب شیمیایی

تئوری پیوند شیمیایی در مورد چسبندگی ، بر اساس تشکیل پیوندهای کووالانسی ، یونی و هیدروژنی بین سطح می‌باشد. مدارکی مبنی بر اینکه پیوندهای کووالانسی با عوامل جفت کنندگی سیلانی تشکیل می‌شود، وجود دارد و ممکن است که چسب‌ها شامل گروههای هیدروکسی یا آمین باشند که با اتم‌های هیدروژن فعال از قبیل گروههای هیدروکسیل ، اگر چوب یا کاغذ اجزا مورد عمل باشند، پیوند هیدروژنی ایجاد می‌کنند.

 

تئوری نفوذ

تئوری نفوذ این دیدگاه را مطرح می‌کند که پلیمرها هنگام تماس ممکن است در همدیگر نفوذ کنند. بنابراین مرز درونی سرانجام برداشته می‌شود و نفوذ پلیمرها در صورتی اتفاق می‌افتد که زنجیرهای متحرک و سازگار باشند. به عبارت دیگر ، دما باید از دمای تبدیل شیشه‌ای بالاتر رود.

 

تئوری الکتروستاتیک

تئوری الکتروستاتیک ، از این طرح سرچشمه گرفته است که وقتی دو فلز در تماس با یکدیگر باشند، الکترون‌ها از یکی به دیگری منتقل می‌شوند و بنابراین یک لایه مضاعف الکتریکی تشکیل می‌گردد که نیروی جذب را نشان می‌دهد. چون پلیمرها ، نارسانا هستند، مشکل به نظر می‌رسد که این تئوری برای چسب‌ها کاربرد داشته باشد.

 

تئوری پیوند درونی مکانیکی

اگر سطحی را که می‌خواهیم روی آن چیزی بچسبانیم، دارای سطحی نامنظم باشد آنگاه ممکن است چسب در ناهمواری‌های سطح ، قبل از سخت شدن داخل شود. این ایده ، باعث ظهور این تئوری شد که به اتصالات چسب با مواد متخلخل از قبیل چوب و نسوجات بسط داده شد. مثالی از این قبیل ، عبارت از استفاده از اتو در لایه چسب و در لباس می‌باشد. لایه چسب‌ها ، حاوی چسب‌های ذوبی هستند که پس از ذوب در پارچه نفوذ می‌کنند..

 

تئوری لایه مرزی ضعیف

تئوری لایه مرزی ضعیف ، پیشنهاد می‌کند که سطوح تمیز ، پیوندهای قوی‌تری با چسب ایجاد می‌کنند. اما برخی آلودگیها از قبیل زنگ و روغن یا گریسها ، لایه ای ایجاد می‌کنند که چسبندگی ضعیفی دارد. همه آلودگیها ، لایه مرزی ضعیف تشکیل نمی‌دهند، زیرا در برخی حالات ، آنها توسط چسب حل خواهند شد. در این محدوده ، چسب‌های ساختمانی آکریلیک ، برتر از اپوکسیدها هستند و این ، بدلیل توانایی آنها برای حل کردن روغن‌ها و گریس‌ها می‌باشد. 

 

آماده سازی سطح برای چسبندگی

 

آماده سازی نامناسب یا نادرست سطح ، احتمالا دلیل عمده شکسته شدن اتصالات چسبی می‌باشد. آماده‌ سازی سطح یک جسم با روش‌های زیر انجام می‌گیرد: روش های سائیدگی ، استفاده از حلال‌ها ، تخلیه شعله وکرونا ، حک کردن تفلون ، حک کردن فلزات ، آندی کردن فلزات ، استفاده از چند سازه ها

 

انواع چسب‌ها

 

چسب‌هایی که توسط واکنش شیمیایی سخت می‌شوند:

 

 

چسب‌های اپوکسیدی:

 

اپوکسیدها ، بهترین نوع چسبهای شناخته شده ساختمانی هستند و بیشترین کاربرد را دارند. رزین اپوکسی که اغلب در حالت معمول استفاده می‌شود، معمولا دی گیلیسریل اتراز بیس فنل DGEBA)A) نامیده می‌شود و بوسیله واکنش نمک سدیم از بیس فنل A با اپی کلروهیدرین ساخته می‌شود. آمینهای آروماتیک و آلیفاتیک به عنوان عامل سخت کننده استفاده می‌شوند. این چسب‌ها به چوب ، فلزات ، شیشه ، بتن ، سرامیک‌ها و پلاستیک‌های سخت بخوبی می‌چسبند و در مقابل روغن‌ها ، آب ، اسیدهای رقیق ، بازها و اکثر حلال‌ها مقاوم هستند. بنابراین کاربرد بیشتری در چسباندن کفپوش‌های وینیلی در سرویس‌ها و مکان‌های خیس و به سطوح فلزی دارند.

 

چسب‌های فنولیک برای فلزات:

 

وقتی که فنل با مقدار اضافی فرمالدئید تحت شرایط بازی در محلول آبی واکنش کند، محصول که تحت عنوان رزول شناخته شده و الیگومری شامل فنل‌های پلدار شده توسط اتروگرومتیلن روی حلقه‌های بنزن می‌باشد، بدست می‌آید. برای جلوگیری از تشکیل حفره‌های پر شده از بخار ، اتصالات چسب‌های فنولیک تحت فشار ، معمولا بین صفحات پهن فولادی گرم شده توسط پرس هیدرولیک سخت می‌شوند. بدلیل شکننده بودن فنولیکها ، پلیمرهایی از جمله پلی وینیل فرمال ، پلی وینیل بوتیرال ، اپوکسیدها و لاستیک نیتریل اضافه می‌شود تا سخت‌تر گردند.

 

چسب‌های تراکمی فرمالدئید برای چوب:

 

تعدادی از چسب‌های مورد استفاده برای چوب نتیجه تراکم فرمالدئید با فنول و رزوسینول (1و3 دی هیدروکسی بنزن) هستند. بقیه با اوره یا ملامین متراکم می‌شوند.

 

 

 

 

چسب‌های آکریلیک:

 

چسب‌های ساختاری شامل منومرهای آکریلیک توسط افزایشی رادیکال آزاد در دمای محیط سخت می‌شوند. منومر اصلی ، متیل متاکریلات (MMA) می‌باشد، اما موارد دیگری از قبیل اسید متاکریلات برای بهبود چسبندگی به فلزات بوسیله تشکیل نمکهای کربوکسیلات و بهبود مقاومت گرمایی و اتیلن گلیکول دی متیل اکریلات برای شبکه‌ای کردن نیز ممکن است مورد استفاده قرار گیرد.

 

کلروسولفونات پلی اتیلن ، یک عامل سخت کننده لاستیک است و کیومن هیدورپراکساید و N,N دی متیلن آنیلین ، اجزاء یک آغازگر اکسایشی- کاهشی هستند. پیوند دهنده هایی که برای اتصالات محکم مصنوعی به استخوان‌های انسان و پوششهای چینی برای دندان‌ها استفاده می‌شود نیز بر مبنای MMA هستند و بطورکلی برای جسباندن فلزات ، سرامیک‌ها ، بیشتر پلاستیک‌ها و لاستیک‌ها استفاده می‌شود و اتصالات پرقدرتی را ایجاد می‌کنند.

 

چسب‌های غیر هوازی:

 

چسب‌های غیر هوازی در غیاب اکسیژن که یک بازدارنده پلیمر شدن است، سخت می‌گردد. این چسب‌ها اغلب بر پایه دی متاکریلات‌هایی از پلی اتیلن گلیکول هستند. کاربرد این چسب‌ها ، اغلب در محل اتصال چرخ دنده ها ، تقویت اتصالات استوانه‌ای و برای دزدگیری می‌باشد.

 

چسب های پلی سولفیدی:

 

پلی سولفیدها در ابتدا به عنوان دزدگیر استفاده می‌شدند و یک کاربرد مهم دزدگیری لبه‌های آینه‌های دوبل می‌باشد. هر دو برای اینکه واحدها را باهم نگه دارند و مانعی در برابر نفوذ رطوبت ایجاد کنند. آنها به وسیله بیس (2- کلرواتیل فرمال) با سدیم پلی سولفید تهیه می‌شوند و به منظور کاهش قیمت از پرکننده های معدنی استفاده می‌شود. به عنوان نرم کننده ، از فتالات‌ها و معرف‌های جفت کننده سیلانی استفاده می‌شود و عامل سخت کننده آنها شامل دی اکسید منگنز و کرومات هستند.

 

 

سفت شدن لاستیکی چسب‌های ساختمانی:

 

بسیاری از چسب‌های ساختمانی ، پلیمرهای لاستیکی حل شده ای در خودشان دارند. وقتی که چسب‌ها سخت می‌شوند، لاستیک به صورت قطراتی با قطر حدود 1µm رسوب می‌کند. لاستیکهای استفاده شده در این روش شامل پلی وینیل فرمال (pvf) و پلی وینیل بوتیرال (PVB) هستند که هر دو بوسیله واکنش آلدئید مناسب با پلی وینیل الکل ساخته می‌شوند.

 

سیلیکون‌ها

 

چسب‌های یک جزئی سیلیکون اغلب به چسب‌های ولکانیزه شونده در دمای اطاق (rtv) معروفند و شامل پلی دی متیل سیلوکسان (PDMS) با جرم‌های مولکولی در محدود 1600-300 با گروههای انتهای استات ، کتوکسیم یا اتر هستند. این گروهها توسط رطوبت اتمسفر ، هیدرولیز شده ، گروههای هیدروکسیل تشکیل می‌دهند که بعدا با حذف آب متراکم می‌شوند.

چسب‌های سیلیکونی نرم و مطلوب هستند و دارای مقاومت محیطی و شیمیایی خوبی هستند. این چسب‌ها به عنوان بهترین پوشش برای استفاده در حمام شناخته شده‌اند.

 

چسب چوب

 

چسب‌هایی که بدون واکنش شیمیایی سخت می‌شوند

این چسب‌ها شامل سه نوع زیر می‌باشند:

چسب‌هایی که در اثر حذف حلال سخت می‌شوند.

چسب‌های تماسی: چسبهای تماسی احتمالا از معروف‌ترین چسب‌ها بر پایه حلال هستند. این‌ها محلول‌هایی از پلیمر در حلال آلی هستند که در دو سطح بکار می‌روند تا متصل شوند. ماده اصلی این چسب‌ها ، لاستیک پلی کلروپرن (پلی کروپرن ، پلی کلرو بوتادین) است و برای چسباندن روکش‌های تزئینی و پلاستیکهای محکم دیگر مثل ABS , DVC به چوپ و محصولات فلزی و چسبهای تماسی DIY برای تخت کفش بکار می‌روند.

 

چسب‌های پمادی: چسب‌های بر پایه حلال مشهور که در ظروف پماد مانند به عموم فروخته می‌شوند، اغلب محلول‌هایی از لاستیک نیتریل (همی‌پلیمر یا بوتادین و آکریلونیتریل) در حلال‌های آلی هستند.

 

چسب‌هایی که با از دست دادن آب سخت می‌شوند:

 

محلول‌های آبی و خمیرها: نشاسته ، ذرت و غلات ، منابع عمده برای استفاده چسب هستند. موارد مصرف عمده برای چسباندن کاغذ ، مقوا و منسوجات می‌باشد. کاربردهای آن شامل صفحات موجدار ، پاکتهای کاغذی ، پنجرگیری تیوپ ، چسباندن کاغذ دیواری و چسب‌های تر شدنی مجدد با آب می‌باشد. چسب‌های تر شدنی توسط آب شامل پلی (وینیل الکل) (DVOH) که در تمبر‌های پُستی مورد استفاده قرار می‌گیرند و از لاتکس صمغهای طبیعی (مثلا صمغی و دکسترین) و پلی وینیل استات (DVN) همراه با مقدار زیادی DVOH پایدار کننده تولید می‌شوند. DVOH تنها پلیمرمعروفی است که از منومر خودش ساخته نمی‌شود.

 

saman77 بازدید : 487 یکشنبه 07 اردیبهشت 1393 نظرات (0)

 

 

به نام خداوندمهربان

 

 

 

موضوع:شیمی محلولها

 

گردآورنده:محمّدیوسفی

 

معلم مربوطه:آقای سلامی

 

کلاس دوم تجربی

 

 

 

 

 

دبیرستان شهیدرجایی1

 

شیمی محلولها

 

 محلولها ، مخلوطهایی همگن هستند. محلولها را معمولا بر حسب حالت فیزیکی آنها طبقه بندی می‌کنند: محلولهای گازی ، محلولهای مایع و محلولهای جامد.

 

محلولها ، مخلوطهایی همگن هستند. محلولها را معمولا بر حسب حالت فیزیکی آنها طبقه بندی می‌کنند محلولهای گازی ، محلولهای مایع و محلولهای جامد. بعضی از آلیاژها محلولهای جامدند؛ سکه‌های نقره‌ای محلولهایی از مس و نقره‌اند و برنج محلولی جامد از روی در مس است. هر آلیاژی محلول جامد نیست، بعضی از آلیاژها مخلوطهایی ناهمگن اند. محلولهای مایع متداولترین محلولها هستند و بیشترین کاربرد را در بررسیهای شیمیایی دارند. هوا هم مثالی برای محلولهای گازی می‌باشد.

 

 ماهیت محلولها

 

در یک محلول ، معمولا جزئی که از لحاظ کمیت بیشترین مقدار را دارد، حلال و سایر اجزا را مواد حل شده (حل شونده) می‌گوییم. اما گاهی آسانتر آن است که جزئی از محلول را با آنکه مقدارش کم است، حلال بنامیم و گاهی اصولا اطلاق نام حلال و حل شونده به اجزای یک محلول (مثلا محلولهای گازی) چندان اهمیتی ندارد.

 

بعضی از مواد به هر نسبت در یکدیگر حل می‌شوند.امتزاج پذیری کامل از ویژگیهای اجزای تمام محلولهای گازی و بعضی از اجزای محلولهای مایع و جامد است. ولی غالبا، مقدار ماده ای که در حلال معینی حل می شود، محدود است. انحلال پذیری یک ماده در یک حلال مخصوص و در دمای معین، بیشترین مقداری از آن ماده است که در مقدار معینی از آن حلال حل می شود و یک سیستم پایدار به وجود می آورد.

 

 

 

غلظت محلول

 

برای یک محلول معین ، مقدار ماده حل شده در واحد حجم حلال یا در واحد حجم محلول را غلظت ماده حل شده می‌گوییم. مهمترین نوع غلظتها که در آزمایشگاه بکار می‌رود مولاریته و نرمالیته است.

 

انواع محلولها

 

محلولهای رقیق

محلولهایی که غلظت ماده حل شده آنها نسبتا کم است

محلولهای غلیظ

محلولهایی که غلظت نسبتا زیاد دارند

محلول سیر شده

اگر مقدار ماده حل شده در یک محلول برابر با انحلال پذیری آن در حلال باشد، آن محلول را محلول سیر شده می‌نامیم. اگر به مقداری از یک حلال مایع ، مقدار زیادی ماده حل شونده (بیشتر از مقدار انحلال پذیری آن) بیفزاییم، بین ماده حل شده و حل شونده باقیمانده تعادل برقرار می‌شود. ماده حل شونده باقیمانده ممکن است جامد ، مایع یا گاز باشد. در تعادل چنین سیستمی ، سرعت انحلال ماده حل شونده برابر با سرعت خارج شدن ماده حل شده از محلول است. بنابراین در حالت تعادل ، غلظت ماده حل شده مقداری ثابت است.

 

محلول سیر نشده

غلظت ماده حل شده در یک محلول سیر نشده کمتر از غلظت آن در یک محلول سیر شده است.

 

 

 

محلول فراسیرشده

می‌توان از یک ماده حل شونده جامد ، محلول فراسیر شده تهیه کرد که در آن، غلظت ماده حل شده بیشتر از غلظت آن در محلول سیر شده است. این محلول ، حالتی نیم پایدار دارد و اگر مقدار بسیار کمی از ماده حل شونده خالص بدان افزوده شود، مقداری از ماده حل شده که بیش از مقدار لازم برای سیرشدن محلول در آن وجود دارد، رسوب می‌کند.

 

خواص فیزیکی محلولها

 

بعضی از خواص محلولها به دو عامل ، نوع ماده حل شده و غلظت آن در محلول بستگی دارند. این مطلب برای بسیاری خواص فیزیکی محلولها از جمله ، محلولهای آبی درست به نظر می‌رسد. برای مثال، محلول نمک طعام در آب بی رنگ پرمنگنات پتاسیم در آب، بنفش صورتی است (در اینجا نوع ماده حل شده مطرح است). افزون بر این ، می‌دانیم که هر چه بر محلول پرمنگنات آب بریزیم و آن را رقیقتر کنیم، از شدت رنگ آن کاسته می‌شود (اینجا غلظت محلول مطرح است)

یکی دیگر از خواص فیزیکی که به این دو عامل بستگی دارد، قابلیت هدایت الکتریکی محلول آبی مواد گوناگون است.

 

چهار خاصه فیزیکی دیگر از محلولها وجود دارد که به نوع و ماهیت ذرات حل شده بستگی ندارد، بلکه فقط به مجموع این ذرات وابسته است. به عبارت دیگر ، تنها عامل موثر بر خواص محلول در اینجا ، غلظت است. چنین خواصی از محلول را معمولا "خواص جمعی محلولها" (خواص کولیگاتیو)).Colligative properties) می‌نامند

 و عبارتند از کاهش فشار بخار ، صعود نقطه جوش ، نزول نقطه انجماد و فشار اسمزی.

 

کاهش فشار بخار

وقتی یک حل شونده غیر فرار در یک حلال حل می‌شود، فشار بخار آن کاهش می‌یابد و مقدار کاهش به مقدار حل شونده بستگی دارد. هر چه میزان حل شونده بیشتر باشد، میزان کاهش در فشار بخار بیشتر است. برای مثال اگر دو ظرف را در نظر بگیریم که در آنها مقدار مساوی مایع وجود دارد که یکی محتوی مولکولهای آب خالص و دیگری محتوی محلول قند در آب است، بدیهی است که تعداد مولکولهای آب در واحد حجم از آب قند ، کمتر از آب خالص است. به همین نسبت ، تعداد مولکولهای آب در سطح آب قند ، نیز کمتر می‌باشد. بنابراین، نسبت مولکولهای پرانرژی آب که قادر به تبخیر از سطح آب قند هستند، کمتر می‌باشد و در نتیجه فشار بخار محلول کمتر می‌شود.

 

افزایش نقطه جوش

 

در اثر حل شدن مقداری حل شونده غیر فرار در یک حلال ، نقطه جوش آن افزایش می‌یابد. مقدار افزایش فقط به مقدار حل شونده بستگی دارد. برای مثال ، آب در شرایط متعارفی (دمای ۲۵درجه سانتیگراد و فشار بخار یک اتمسفر یا ۷۶۰میلی متر جیوه) در ۱۰۰درجه سانتیگراد می جوشد. اما اگر در آب، مقداری قند مثلا به غلظت یک مولال (یک مول در ۱۰۰۰گرم آب) بریزیم، فشار بخار محلول آب قند به اندازه ۱۴میلی متر جیوه کاهش می‌یابد و در نتیجه محلول در ۵۲/۱۰۰درجه سانتیگراد می‌جوشد.

 

کاهش نقطه انجماد

وقتی یک حل شونده غیر فرار در یک حلال حل می‌شود، نقطه انجماد آن کاهش می‌یابد. بنابراین دمای انجماد محلولهای آبی همیشه کمتر از دمای انجماد آب خالص است. استفاده از این خاصیت در رادیاتور اتومبیل می‌باشد که برای جلوگیری از یخ زدن آب رادیاتور اتومبیل در زمستان ، به آن مقداری مایع به نام ضد یخ می‌افزایند. همچنین با اضافه کردن نمک (مانند کلرید سدیم) همراه با شن ریز روی آسفالت خیابانهای شهر ، هیدراته شدن یونهای نمکها مستلزم مصرف مقداری آب است که از ذوب شدن برف فراهم می گردد. بنابراین آب نمک غلیظی فراهم می‌شود که حتی در ۲۰درجه زیر صفر منجمد نمی‌ شود.

 

فشار اسمزی

اگر در ظرف U شکلی ، حلال A از مخلوط حلال و حل شونده (B + A) به وسیله یک غشای نیمه تراوا ، جدا شود، چون فقط حلال از غشا عبور می‌کند، بعد از رسیدن به حالت تعادل ، ارتفاع مایع در قسمت که حل شونده وجود دارد بالا می رود. 

 

اگر به این ستون فشار وارد شود تا سطح مایع در دو طرف یکسان شود، این فشاراسمزی است که به علت حل شدن حل شونده غیر فرار در حلال ایجاد شده است. 

به عکس فرآیند اسمز ، اسمز معکوس گویند که برای شیرین کردن آب استفاده می شود. همچنین برای تعیین جرم مولکولی پلیمرها ، پروتئینها و بطور کلی مولکولهای سنگین از فشار اسمزی استفاده می‌شود.

saman77 بازدید : 117 یکشنبه 07 اردیبهشت 1393 نظرات (0)

 

 

به نام یگانه خالق هستی

 

 

 

موضوع:اسیدها

گردآورنده:محمّدیوسفی

معلم مربوطه:آقای سلامی

 

کلاس دوم تجربی

 

 

 

 

 

دبیرستان شهید رجایی1

اسیدها

 اسیدها موادی ترش مزه اند خاصیت خورندگی دارند شناساگرها را تغییر رنگ می دهند و بازها را خنثی می کنند.

تعریف قدیمی

اسیدها موادی ترش مزه اند خاصیت خورندگی دارند شناساگرها را تغییر رنگ می دهند و بازها را خنثی می کنند.

بازها موادی با مزهٔ گس-تلخ اند حالتی لزج دارند شناساگرها را تغییر رنگ می دهند و اسیدها را خنثی می کنند.

لی بیگ: اسیدها موادی اند که در ساختار خود هیدروژن یا هیدروژن هایی دارند که در واکنش با فلزها توسط یون های فلز جایگزین می شوند.

آرنیوس: اسیدها موادی هستند که ضمن حل شدن در آب یون +H آزاد می کنند. بازها موادی هستند که ضمن حل شدن در آب یون -OH آزاد می کنند.این تعریف فقط به موادی محدود می‌شود که در آب قابل حل باشند. حدود سال ۱۸۰۰، شیمی دانان فرانسوی از جمله آنتوان لاووازیه، تصور می کرد که تمام اسیدها دارای اکسیژن هستند. شیمی دانان انگلیسی از جمله سر همفری دیوی، معتقد بود که تمام اسیدها دارای هیدروژن هستند. شیمی دان سوئدی، سوانت آرنیوس، از این عقیده برای گسترش تعریف اسید استفاده نمود.

 

لوییس: اسیدها موادی هستند که در واکنش های شیمیایی پیوند داتیو می پذیرند. بازها موادی هستند که در واکنش های شیمیایی پیوند داتیو می دهند.تعریف لوییس را با نظریه اوربیتال مولکولی هم می‌توان بیان کرد. به طور کلی، اسید می‌تواند یک جفت الکترون از بالاترین اوربیتال خالی در پایین اوربیتال خالی خود دریافت کند. این نظر را گیلبرت ن. لوییس مطرح کرد. با وجود این که این تعریف گسترده ترین تعریف است، تعریف لوری-برونستد کاربرد بیشتری دارد. با استفاده از این تعریف می‌توان میزان قدرت یک اسید را هم مشخص نمود. از این مفهوم در شیمی آلی هم استفاده می‌شود (مثلاً در کربوکسیلیک اسید)

 

 

 

نگاه اجمالی

بشر از دیر باز با مفهوم ساده اسید آشنایی داشته است. در حقیقت این مواد، حتی قبل از آنکه شیمی به صورت یک علم در آید، شناخته شده بودند. اسیدهای آلی همچون سرکه و آبلیمو و آب غوره از قدیم معروف بودند. اسیدهای معمولی مانند اسید سولفوریک ، اسید کلریدریک و اسید نیتریک بوسیله کیمیاگران قدیم ساخته شدند و بصورت محلول در آب بکار رفتند. برای مثال اسید سولفوریک را جابربن حیان برای نخستین بار از تقطیر بلورهای زاج سبز (FeSO۴.۷H۲O) و حل کردن بخارات حاصل در آب ، بدست آورد.

 

در طی سالیان متمادی بر اساس تجربیات عملی لاووازیه (A.L.Lavoisier) چنین تلقی می‌گردید که اجزاء ساختمان عمومی کلیه اسیدها از عنصر اکسیژن تشکیل گردیده است. اما بتدریج این موضوع از نظر علمی روشن و اعلام گردید که چنانچه این موضوع صحت داشته باشد، بر خلاف عقیده اعلام شده در مورد اکسیژن ، این عنصر هیدروژن است. در حقیقت ، تعریف یک اسید بنا به فرمول اعلام شده از سوی لیبیگ: (J. Von Liebig) در سال ۱۸۴۰عبارت است از

ـ موادی حاوی هیدروژن که می‌توانند با فلزات واکنش نموده و گاز هیدروژن تولید نمایند.

ـ نظریه فوق مدت پنجاه سال مورد استناد بوده است. بعدها با پیشرفت علم شیمی ، مفاهیم جدیدی درباره اسیدها اعلام شده که در زیر به بررسی آنها خواهیم پرداخت.

 

خواص عمومی اسیدها

 

محلول آبی آنها یونهای پروتون آزاد می‌کند

موادی هستند که از نظر مزه ترشند

کاغذ تورنسل را سرخ رنگ می‌کنند

با برخی فلزات مانند آهن و روی ترکیب شده گاز هیدروژن می‌دهند

با قلیاها (بازها) واکنش نموده و املاح را تشکیل می‌دهند

 

با کربنات کلسیم (مثلا به صورت سنگ مرمر) بشدت واکنش دارند، بطوریکه کف می‌کنند و گاز کربنیک آزاد می‌نمایند.

 

اکسیدهای اسیدی

اکسیدهای بسیاری از غیرفلزات با آب واکنش داده و اسید تولید می‌کنند، در نتیجه این مواد را اکسیدهای اسیدی یا ایندرید اسید می‌نامند.

N۲O۵(s) + H۲O → H+ + NO۳-aq

 

مفهوم آرنیوس ، به علت تاکید آن بر آب و واکنشهای محلول‌های آبی ، با محدودیت رو‌به‌روست.

اسید ۲ + باز ۱ <----- اسید ۱ + باز ۲

قدرت اسیدها ، بر میل آنها برای از دست دادن یا گرفتن پروتون استوار است. هر چه اسید قویتر باشد، باز مزدوج آن ضعیفتر است. در یک واکنش ، تعادل در جهت تشکیل اسید ضعیفتر است. اسید پرکلریک ، HClO۴، قویترین اسید است، و باز مزدوج آن ، یعنی یون پرکلرات ، -ClO۴، ضعیفترین باز می‌باشد. H۲، ضعیفترین اسید و باز مزدوج آن یعنی یون هیدرید ، +H قویترین باز می‌باشد

 

نظریه لوییس درباره اسیدها

 

گیلبرت لوییس مفهوم گسترده‌تری برای اسیدها در سال ۱۹۳۸پیشنهاد داد که پدیده اسید - باز را از پروتون رها ساخت. طبق تعریف لوییس ، اسید ماده‌ای است که بتواند با پذیرش یک زوج الکترون از باز ، یک پیوند کوولانسی تشکیل دهد. در نظریه لوییس به مفهوم زوج الکترون و تشکیل پیوند کووالانسی تاکید می‌شود. تعریف لوییس در مورد اسیدها بسیار گسترده‌تر از آن است که برونشتد عنوان نموده است. ترکیبات شیمیایی که می‌توانند نقش اسید لوییس داشته باشند، عبارتند از:

مولکولها یا اتمهایی که هشت‌تایی ناقص داشته باشند

(BH۳ + F- → BH۴-(aq

 

بسیاری از کاتیونهای ساده می‌توانند نقش اسید لوییس داشته باشند.

Cu+۲ + ۴NH۳ → Cu(NH۳)۴+۲

 

برخی از اتم‌های فلزی در تشکیل ترکیباتی مانند کربونیل‌ها که از واکنش فلز با مونوکسید کربن تولید می‌شود، نقش اسید دارند.

Ni + ۴CO → Ni(CO)۴

 

ترکیباتی که اتم مرکزی آنها تونایی گسترش لایه ظرفیتی خود را داشته باشند ، در واکنشهایی که این گسترش عملی شود، نقش اسید دارند، مثلا در واکنش مقابل ، لایه ظرفیتی اتم مرکزی (Sn) از ۸به ۲الکترون گسترش یافته‌است.

SnCl۴ + ۲Cl- → SnCl۶-۲aq

 

برخی ترکیبات به علت داشتن یک یا چند پیوند دو گانه در مولکول ، خاصیت اسیدی دارند. مثلا CO۲

قدرت اسیدی و ساختار مولکولی.

به منظور بررسی رابطه بین ساختار مولکولی و قدرت اسیدی ، اسیدها را به دو نوع تقسیم می‌کنیم: هیدریدهای کووالانسی و اکسی ‌اسیدها

 

هیدریدها

برخی از ترکیبات کووالانسی دوتایی هیدروژن دار اسیدی هستند.دو عامل بر قدرت اسیدی هیدریدیک

عنصرموثر است:الکترونگاتیوی عنصرو اندازه اتمی عنصر.

قدرت اسیدی هیدریدهای عناصر یک گروه، با افزایش اندازه اتم مرکزی افزایش می‌یابد. در تناوب دومNH۳>H۲O>HF در گروه VIبه اینصورت است:

 

H۲Te > H۲Se > H۲S > H۲O

اکسی ‌اسیدها

 

در این ترکیبات ، هیدروژن اسیدی به یک اتم O متصل است و تغییر در اندازه این اتم بسیار ناچیز است. بنابراین عامل کلیدی در قدرت اسیدی این اکسی‌اسیدها، به الکترونگاتیوی اتم Z مربوط می‌شود

.H-O-Z

اگر Z یک اتم غیرفلز با الکترونگاتیوی بالا باشد، سهمی در کاهش چگالی الکترونی پیرامون اتم O (علی رغم الکترونگاتیوی شدید اکسیژن) را دارد. این پدیده باعث می‌شود که اتم اکسیژن، با کشیدن چگالی الکترونی پیوند H-O از اتم H ، تفکیک آن را سرعت ببخشد و ترکیب را اسیدی بکند. هیپوکلرواسید ، .HOCl اسیدی از این نوع است

 

مهمترین اسیدهای قوی

 

مولکولهای این اسیدها و در محلولهای آبی رقیق کاملا یونیزه است. اسیدهای قوی متعارف عبارتند از: اسید کلریدریک ، یدیدریک ، نیتریک ، سولفوریک ، پرکلریک است.

 

مهمترین اسیدهای ضعیف

 

یونیزاسیون این اسیدها در آب کامل نمی‌باشد و هرگز به ۱۰۰%نمی‌رسد. مثال متعارف آنها ، اسید استیک ، اسید کربنیک ، اسیدفلوریدریک ، اسید نیترو و تا حدودی اسید فسفریک است.

 

اسیدها مزه ترشی دارند بعضی اسیدها سمی هستند بعضی باعث سوختگی های شدید می شوند و تعدادی نیز کاملاً بی ضرر به شمار می آیند بعضی اسیدها نیز خوراکی و بسیار مفید هستند ما اسید سیتریک را از پرتقال و لیموترش به دست می آوریم بدنمان هم اسیدهایی را می سازند که به گوارش غذا کمک می کنند.

 

اسید سولفوریک یکی از قوی ترین و مهم ترین اسیدها است که به مقدار فراوان در تولید انواع کود ، فرآورده های نفتی و آهن و فولاد بکار گرفته می شوند آب باتری اتومبیل ها اسید سولفوریک رقیق شده با آب خالص است سایر اسیدهای قوی عبارتند از: اسید نیتریک و اسید کلرید ریک.

 

بازها یا قلیاها موادی هستند که مخالف و ضد اسیدها به شمار می آیند گرچه بعضی بازها از قبیل آهک (هیدروکسید کلسیم) و سود سوز آور همانند اسیدها خیلی فعال و خورنده هستند از بازها در فرآیند های صنعتی استفاده می شوند هیدروکسید منیزیم (مایع یا پودر سفیدی که برای برطرف کردن درد ناشی از حالت اسیدی معده مصرف می کنیم) نمونه ای از یک باز ملایم است بازی که در آن قابل حل می باشد ، قلیا نامیده می شود وقتی یک اسید و یک باز به نسبت مناسب با هم مخلوط می شوند یکدیکر را خنثی می کنند برای مثال اگر اسید کلرید ریک با سود سوز آور مخلوط شود حاصل واکنش آنها نمک معمولی و آب خواهد بود بعضی مواد وقتی با اسید و بازها تماس پی

mehdi-unique بازدید : 113 سه شنبه 26 فروردین 1393 نظرات (0)

                                                     به نام خدا

تحقیقی از : جواد میرزاخواه

موضوع : اکسایش

اُکسایــِش و کاهش (به انگلیسی: Redox) نام کلی واکنش‌های شیمیایی است که مایه تغییر عدد اکسایش اتم‌ها می‌شوند. این فرایند می‌تواند دربرگیرنده واکنش‌های ساده‌ای همچون اکسایش کربن و تبدیل آن به کربن دی‌اکسید و کاهش کربن و تبدیل آن به متان و یا واکنش‌های پیچیده‌ای چون اکسایش قند در بدن انسان طی واکنش‌های چند مرحله‌ای باشد

mehdi-unique بازدید : 700 سه شنبه 26 فروردین 1393 نظرات (0)

                                                      به نام خدا

تحقیقی از : جواد میرزاخواه

موضوع : پیوند داتیو
 

پیوند داتیو
 نوعی پیوند کووالانسی بین دو اتم است که دو الکترون از یک اتم وارد اربیتال خالی اتم دیگر می‌شوند

mehdi-unique بازدید : 548 سه شنبه 26 فروردین 1393 نظرات (0)

                                                     به نام خدا

تحقیقی از : جواد میرزاخواه

موضوع : اتم اسکاندیم



اسکاندیم
(Scandium) از عنصرهای شیمیاییجدول تناوبی است. نشانه کوتاه آن Sc و عدد اتمی آن ۲۱ است.

سلامی (مدیر سایت) بازدید : 1048 دوشنبه 04 فروردین 1393 نظرات (0)

 

شیمی۳

شیمی۲

شیمی ۱و ۲ پیش دانشگاهی

پاسخ ها را در ادامه ببینیند.....



pouyan بازدید : 715 سه شنبه 06 اسفند 1392 نظرات (0)

 

بسم الله رحمان رحیم

پویان غفاری

کلاس06

مدرسه ی شهید نصیری

منبع:سایت رشد

 

دید کلی

شیمی کوانتومی ، دانش کاربرد مکانیک کوانتومی در مسایل مربوط به شیمی است. اثر شیمی کوانتومی ، در شاخه‌های وابسته به شیمی قابل لمس است. مثلا :

 

    علمای شیمی فیزیک ، مکانیک کوانتومی را (به کمک مکانیک آماری) در محاسبات مربوط به خواص ترمودینامیکی (مانند آنتروپی و ظرفیت حرارتی) گازها ، در تفسیر طیفهای مولکولی به منظور تائید تجربه خواص مولکولی (مانند طولها و زوایای پیوندی) ، در محاسبات نظری خواص مولکولی ، برای محاسبه خواص حالات گذار واکنشهای شیمیایی به منظور برآورد ثابتهای سرعت واکنش ، برای فهم نیروهای بین مولکولی و بالاخره برای بررسی ماهیت پیوند در جامدات بکار می‌برند.

  

pouyan بازدید : 474 سه شنبه 06 اسفند 1392 نظرات (0)

 

بسم الله رحمان رحیم

پویان غفاری

کلاس06

مدرسه ی شهید نصیری

منبع:سایت رشد

    

سختی آب

     تازه کردن چاپ

علوم طبیعت > شیمی > شیمی کاربردی (صنعتی) > شیمی آب

     (cached)

 

 

سختی آب (Hardner) ، اساسا به معنی ظرفیت آن در ترسیب صابون است.

عناصر ایجاد کننده سختی آب

 

yaser020 بازدید : 420 شنبه 19 بهمن 1392 نظرات (0)

           نام و نام خانوادگی:           یاسر قاسمی

                      کلاس:                     06

 

                                 جدول تناوبی

 

برای دانلود برنامه جدول تناوبی بر روی گوشیهای با سیستم  عامل اندروید به ادامه مطلب بروید.

 

sattar بازدید : 1520 سه شنبه 17 دی 1392 نظرات (1)

ستار موقر

نصیری

05

 

استرها /لاکتون ها / الکل ها

 

خواص استر

استرها غالبا فرار و معطرند و برخی از آنها در میوه‌های رسیده یافت می‌شوند. مثلا استات ایزوپنتیل ، بویموز است، والرات ایزوپنتیل بوی سیب بوده و پروپیونات ایزوبوتیل ، بوی نیشکر است.

موارد استفاده از استر

خیلی از استرها مانند استات اتیل و استات بوتیل ، بعنوان واکنش‌گر و یا حلال و نرم کننده رزینها در آزمایشگاهها و صنعت مورد استفاده قرار می‌گیرند.

استرهای طبیعی

مومها

چربیها و روغن‌ها و موم‌هایی که در طبیعت یافت می‌شوند، حاوی استرهایی با جرم مولکولی بالا می‌باشند که به لیپید موسومند. موم‌ها مخلوط پیچیده‌ای از استرها ، الکلها و آلکانهای با زنجیر طویل می‌باشند، ولی جزء اصلی تشکیل دهنده آنها ، استرهایی می‌باشند که از واکنش اسیدهای چرب و الکلهای با زنجیر طویل بوجود می‌آیند.

از جداسازی و مطالعه مواد تشکیل دهنده موم زنبور عسل معلوم شده است که میریسیل پالمیتات ، بیشترین مقدار آن را تشکیل می‌دهد که یک استر است.

momy0131 بازدید : 8027 شنبه 07 دی 1392 نظرات (1)

اول از همه بهتـــره بدونيم پرتو کاتدی چه زمانی جريان ميابد؟پرتو کاتدی،زمانی جريان ميابد که بين کاتد(منفی) و آند (مثبت)جریان الکترسیته به وجود آید.

پرتو کاتدی،بار منفی دارد.اين امر را با آزمايشی ساده ميتوانيم اثبات کنيم.به کمک يک آهنربا ميتوانيم منفی بودن اين پرتو را به راحتی اثبات کنيم.

 

پرتوهای کاتدی،در لوله های حاوی گازهای مختلف،رنگ های مختلفی دارند.

 

در لوله ی حاوی گاز هيدروزژن،پرتو کاتدی صورتی رنگ است.

 

در لوله حاوی گاز آرگون بنفش است.(بعضی لامپ های مهتابی)

 

در لوله حاوی گاز هليم گل بهی رنگ است.(لامپ های مهتابی)

 

کاربردها


1-صنعت معدن 

 

 

در مهندسی معدن از پرتو های کاتدی استفاده می شود.به این صورت که کادانان و مهندسان برای آن که بفهمند که چه عناصری در یک تکه سنگ یا سنگ های یک کوه وجود دارد و جنس آن کوه را تشخیص دهند مقداری از سنگ های کوه مورد نظر را کنه و بعد از بردن به آزمابشگاه و بوسیله ی ابزار هایی که دارند به آن    ها پرتو کاتدی می تابانند و طبق این قانون که هر عنصر در مقابل پرتو های کاتدی رنگ خاصی دارد می توانند تشخیص بدهند که چه عناصری در ماده ی مورد نظر وجود دارد.

 

2- الکتروشیمی

 

استفاده از پرتو های کاتدی در الکترو شیمی نیز کاربرد دارد.به این صورت که اگر در بدن شخصی غده ی سرطانی وجود داشته باشد یا قسمتی از بدن فرد دارای سرطان باشد می توانیم با پرتو های کاتدی از آن عکس برداری کنیم. روش کار به این صورت است که در بدن شخصی که دارای سرطان است در قسمتی که سرطان وجود دارد با تزریق فلز مورد نظر یا ماده ی شیمیایی که برای این کار مناسب باشد به قسنت سرطانی می توان با تاباندن پرتو کاتدی به راحتی از بدن شخص عکس گرفت.

 

پرتو های کاتدی استفاده های زیاد دیگری دارند مثلا استفاده در تلوزیون ها و مانیتور های کامپیوتر و ......

 

 

7777 بازدید : 141 یکشنبه 01 دی 1392 نظرات (0)

یونی نوعی از پیوند شیمیایی است که برپایه نیروی الکترواستاتیک بین دو یون با بار مخالف شکل می‌گیرد.

ترکیبات یونی متشکل از تعداد زیادی آنیون و کاتیون هستند که با طرح معین هندسی در کنار هم قرار گرفته‌اند و یک بلور بوجود می‌آورند. هر بلور، به سبب جاذبه‌های منفی ـ مثبت یونها به هم، نگهداشته شده است. فرمول شیمیایی یک ترکیب یونی نشانه ساده‌ترین نسبت یونهای مختلف برای به وجود آوردن بلوری است که از نظر الکتریکی خنثی باشد.

ماهیت یون[ویرایش]

وقتی اتم‌ها به یون تبدیل می‌شوند، خواص آنها شدیدا تغییر می کند. مثلاً مجموعه‌ای از مولکولهای برم قرمز است. اما یونهای برم در رنگ بلور مادهٔ مرکب هیچ دخالتی ندارند. یک قطعه سدیم شامل اتم‌های سدیم نرم است. خواص فلزی دارد و بر آب به شدت اثر می‌کند. اما یونهای سدیم در آب پایدارند.

مجموعه بزرگی از مولکولهای کلر، گازی سمّی به‌رنگ زرد مایل به سبز است، ولی یونهای کلرید مواد مرکب رنگ ایجاد نمی‌کنند و سمّی نیستند. به همین لحاظ است که یونهای سدیم و کلر را به صورت نمک طعام می‌توان بدون ترس از واکنش شدید روی گوجه فرنگی ریخت. وقتی اتم‌ها به صورت یون در می‌آیند، ماهیت آنها آشکارا تغییر می‌کند.

خواص مواد مرکب یونی[ویرایش]

رسانایی الکتریکی : رسانایی الکتریکی مواد مرکب یونی مذاب به این علت است که وقتی قطب‌هایی با بار مخالف در این مواد مذاب قرار گیرد و میدان الکتریکی برقرارشود، یونها آزادانه به حرکت در می‌آیند. این حرکت یونها بار یا جریان را از یک‌جا به جای دیگر منتقل می‌کنند. در جسم جامد که یونها بی‌حرکت‌اند و نمی‌توانند آزادانه حرکت کنند، جسم خاصیت رسانای الکتریکی ندارد.

سختی : سختی مواد مرکب یونی به علت پیوند محکم میان یونهای با بار مخالف است. برای پیوندهای قوی انرژی بسیاری لازم است تا یون‌ها از هم جدا شوند و امکان حرکت آزاد حالت مذاب را پیداکنند. انرژی زیاد به معنی نقطه جوش بالا است که خود از ویژگی‌های مواد مرکب یونی است.

شکنندگی : مواد مرکب یونی شکننده‌اند. زیرا که ساختار جامد آنها آرایه منظمی از یونهاست. مثلاً ساختار سدیم کلرید (NaCl) را در نظر بگیرید. هرگاه یک سطح از یونها فقط به فاصله یک یون در هر جهت جابجا شود، یونهایی که بار مشابه دارند درکنار یکدیگر قرار می‌گیرند و یکدیگر را دفع می‌کنند و چون جاذبه‌ای در کار نیست بلور می‌شکند. سدیم کلرید را نمی‌توان با چکش کاری، به ورقه‌های نازک تبدیل کرد. با چنین عملی بلور نمک خرد و از هم پاشیده می‌شود.

 

عناصرگروه IA (فلزات قلیایی) یعنی Li ، Na ، K ، Rb ، Cs، هر یک به ترتیب یک الکترون بیشتر از گازهای نجیب ، (He ، Kr ، Ne ، Ar ، Xe) دارند. اگر هر یک از این فلزات از هر اتم یک الکترون از دست بدهند، جزء باقیمانده آرایش الکترونی گاز نجیب متناظر خود را پیدا می‌کند. مثلاً ، Li یک الکترون والانس در آرایش حالت پایه دارد. از دست دادن یک الکترون موجب می‌شود که Li ساختار الکترونی He را پیداکند. یک اتم Li که فقط دو الکترون و سه پروتون داشته باشد، بار +۱ خواهد داشت.

یک اتم باردار مانند یا یک گروه از اتم‌های باردار، مانند گروه سولفات را یون می‌گویند.

عناصر گروه IIA (فلزات قلیایی خاکی) هریک دو الکترون والانس دارند. پس برای اینکه mg ، ca ، sr ، ba ساختار گاز نجیب را به دست آورند اتم‌های هرعنصر باید دو الکترون از دست بدهند. از دست رفتن دو الکترون موجب می‌شود که دو پروتون در هسته خنثی نشده بماند. پس هر یون بار +۲ خواهد داشت. برای جدا شدن سومین الکترون لازم است جفت الکترونهای تراز اصلی با انرژی پایین‌تر شکسته شود. این امر انرژی زیادتری می‌خواهد. جداشدن الکترونها از فلزات و تشکیل یونهای مثبت حاصل از آنها را می‌توان به راههای مختلف ترسیم کرد.

پس جدا شدن یک الکترون از یک اتم معین جداشدن الکترونهای بعدی به ترتیب مشکلتر می‌شود. زیرا با از دست رفتن هر الکترون بار مؤثر زیادتری می‌شود و الکترونهای باقیمانده را محکمتر نگاه می‌دارد. بطور خلاصه یونهای مثبت وقتی تشکیل می‌شوند که اتم‌های فلزی یک الکترون (گروهIA) دو الکترون (گروهIIA) و یا سه الکترون (گروهIIIA) به اتم‌های غیر فلزی می‌دهند. یونهای حاصل آرایش الکترونی یکسان با یک گاز نجیب دارند.

عناصر گروه VIIA (هالوژنها) یونهای مثبت در حضور یونهای منفی پایدار می‌شوند. خنثی شدن بار، هر دو نوع یون را پایدار می‌کند. یونهای منفی پایدار، از اتم‌هایی که شش یا هفت الکترون والانس دارند، تولید می‌شوند. اینگونه اتم‌ها آنقدر الکترون بدست می‌آورند تا ساختار گاز نجیب را پیدا کنند. مثلاً اتم‌های عناصر گروه VIIA (هالوژن‌ها) هفت الکترون والانس دارند و هر یک، یک الکترون می‌خواهند تا آرایش الکترونی یک گاز نجیب را پیدا کنند.

اگر اتم‌های F ، Cl ، Br ، I هر یک، یک الکترون بدست آورند، یونهای حاصل یعنی ، ،، به ترتیب آرایش الکترونی را خواهند داشت.

عناص گروه VIA (گروه اکسیژن) اتم عناصر (VIA) برای رسیدن به ساختار الکترونی یک گاز نجیب هریک دو الکترون نیاز دارند. اضافه شدن دو الکترون به هر اتم، سبب تولید می‌شود. روند به دست آوردن الکترون توسط غیرفلزات، مانند از دست دادن الکترون توسط فلزات را می‌توان به راههای متفاوت ترسیم کرد. بطور خلاصه غیرفلزات یک، دو، یا سه الکترون از فلزات می‌گیرند و یون منفی ایجاد می‌کنند.

این یونهای منفی همگی الکترونهای والانس جفت شده و آرایش هشت الکترونی پایدار گازهای نجیب را دارند.

فرمول شیمیایی مواد مرکب یونی فرمول شیمیایی یک ماده مرکب از لحاظ الکتریکی خنثی است. خنثی بودن الکتریکی مستلزم آن است که شمار بارهای مثبت و منفی در بلور ماده مرکب برابر باشند. دو برای هر، سه یون برای دو یون Al^۳+ و الی آخر. در بلور نمک طعام یونهای با جاذبه الکتریکی میان بارهای مخالف، در جای خود نگاه داشته شده‌اند.

علاوه بر این، برای خنثی بودن این ماده مرکب باید نسبت یونهای سدیم به یونهای کلرید ۱ به ۱ باشد. در این صورت ساده‌ترین فرمول آن خواهد بود. در ساختار بلورین هر یون سدیم با هر شش یون کلرید اطراف آن جذب می‌شود. به همین طریق هر یون کلرید با هر شش یون سدیم اطراف آن جذب می‌شود.

در ساختارهای یونی هیچ مولکول تک اتمی وجود ندارد، یعنی هیچ یون خاصی وجود ندارد که منحصرا به یک یون دیگر بپیوندد.علیرضا دیده بان        مدرسه شهید نصیری        کلاس 06     دوم ریاضی

 

amirho1234 بازدید : 610 شنبه 30 آذر 1392 نظرات (0)

امیرحسین خساره

کلاس : 06

مدرسه شهید نصیری

 

نظریه اتمی

از ویکی‌پدیا، دانشنامهٔ آزاد

نظریهٔ اتم، سنگ بنای شیمی جدید است. درک ساختار اتمی و بر‌هم‌کنش اتم‌ها، محور درک شیمی است. بیان نخستین نظریه‌ی اتمی را معمولاً به یونانیان باستان نسبت می‌دهند، اما ریشهٔ این مفهوم حتی ممکن است در تمدن‌های کهن تر باشد. بر اساس نظریه‌ی اتمی لیوکیپوس و دموکریتوس، تقسیم مستمر ماده، درنهایت، اتم‌ها را به دست می‌دهد که قابلیت تجزیه شدن آن‌ها ممکن نبود.

 

amirho1234 بازدید : 550 شنبه 30 آذر 1392 نظرات (0)

امیرحسین خساره

کلاس : 06

مدرسه شهید نصیری

 

اصل طرد پائولی

 

قاعده پائولی و یا قاعده غیر امکان و یا اصل طرد پائولی اصلی در مکانیک کوانتومی است که ولفگانگ پائولی فیزیک‌دان اتریشیی/سوئیسی در سال ۱۹۲۵ بیان کرد. این قاعدهٔ بسیار مهم می‌گوید که در یک سیستم کوانتومی، دو یا چند فرمیون همسان (مثلاً دو الکترون) نمی‌توانند همزمان حالت کوانتومی یکسانی داشته باشند. برای الکترون‌های یک اتم، این اصل می‌گوید که چهار عدد کوانتومی هیچ دو الکترونی یکی نیست، یعنی مثلاً اگر n، l و ml دو الکترون یکی باشد، ms به ناچار برای آن دو متفاوت خواهد بود (یعنی دو الکترون اسپینهای مخالف خواهند داشت).

amirho1234 بازدید : 466 شنبه 30 آذر 1392 نظرات (0)

امیرحسین خساره

کلاس : 06

مدرسه شهید نصیری

 

آرایش الکترونی

 

 

اوربیتال‌های اتمی

آرایش الکترونی نحوه چنیش الکترون‌ها در اوربیتال‌ها اطراف هسته اتم را نشان می‌دهد. و شیوه پر شدن زیر لایه‌ها به ترتیب زیر است:

۱s ۲s ۲p ۳s ۳p ۴s ۳d ۴p ۵s ۴d ۵p ۶s ۴f ۵d ۶p ۷s ۵f ۶d ۷p

meysamakbari2 بازدید : 339 شنبه 30 آذر 1392 نظرات (0)

موضوع تحقیق:الکترونگاتیوی

نام ونام خانوادگی:میثم اکبری

شهیدنصیری ٠٦

 

اتم وقتی در لایه ظرفیت خود الکترون کمتری داشته باشد تمایلش به گرفتن و یا دادن الکترون بیشتر می‌شود. هرچه عنصری تمایل بیشتری به گرفتن الکترون داشته باشد الکترونگاتیوتر است.

تعداد صفحات : 10

درباره ما
Profile Pic
داریوش سلامی ..................................................................................... کارشناسی ارشد شیمی فیزیک................................................................... دبیرشیمی ناحیه1رشت .......................................................................... .shimisalami@yahoo.com ................................................................ شیمی یکی از مهمترین علوم پایه است که نقش کلیدی در زندگی بشر امروزی دارد و هر جنبه از زندگی ما ارتباط نزدیکی با این علم دارد.
اطلاعات کاربری
  • فراموشی رمز عبور؟
  • نظرسنجی
    به سایت نمره بدهید.
    پیوندهای روزانه
    صفحات جداگانه
    آمار سایت
  • کل مطالب : 1015
  • کل نظرات : 183
  • افراد آنلاین : 2
  • تعداد اعضا : 461
  • آی پی امروز : 59
  • آی پی دیروز : 108
  • بازدید امروز : 154
  • باردید دیروز : 414
  • گوگل امروز : 0
  • گوگل دیروز : 9
  • بازدید هفته : 1,815
  • بازدید ماه : 6,611
  • بازدید سال : 54,022
  • بازدید کلی : 1,546,650
  • کدهای اختصاصی