loading...
شیــمـی سـلــامـــی/ شیمی دبیرستان
آخرین ارسال های انجمن
janalizadeh بازدید : 501 یکشنبه 04 اسفند 1392 نظرات (0)

 

امیرمحمد جانعلی زاده

دبیر آقای سلامی

کلاس05

مدرسه شهید نصیری

تحقیقات نشان می‌دهند بین افزایش میزان گازهای گلخانه‌ایموجود در جوبا گرم شدن کره زمینارتباط مستقیمی وجود دارد.

زمین مقداری از انرژی خورشیدرا جذب می‌کند و باقی آن را بازمی‌تاباند. در طی این فرآیند طول موج نور تغییر پیدا می‌کند. بعضی از گازهای موجود در جو زمین، این تابش خروجی را جذب می‌کنند. این تابش عمدتاً در محدودهٔ فروسرخاست. مولکول گازهای گلخانه‌ای، بسیار بیشتر از سایر گازها نور فروسرخ را جذب می‌کند. جذب انرژیتوسط مولکول‌های گاز سبب جنبش مولکولو افزایش انرژی آن می‌شود. وقتی این اتفاق در مقیاس بزرگ رخ دهد، مانند این است که زمین را با یک پتو پوشانده‌ایم. دمای کل نواحی زمین افزایش می‌یابد. این پدیده اثر گلخانه‌ای نامیده می‌شود. [۱]

گازهای گل‌خانه‌ای (به انگلیسی: گاز گلخانه‌ای) گازهایی هستند که باعث اثر گلخانه‌ای در جو می‌شوند.

این گازها می‌توانند تا مدت زیادی حرارت را در خود نگه دارند، و امروزه اضافه شدن بیش از حد گازهای گلخانه‌ای به جو زمین، باعث افزایش دمای زمین شده‌است. از مهم‌ترین این گازها می‌توان از بخار آبو دی‌اکسیدکربننام برد. از دیگر گازهای گلخانه‌ای می‌توان متانرا نام برد که دراثر خوردن چوب توسط موریانه تولید می‌شود.

گازهای گلخانه‌ای عبارت‌اند از ترکیبات گازی که در «اثر گلخانه‌ای» نقش دارند. عمده‌ترین گازهای طبیعی از این دسته عبارت‌اند از: بخار آب (۶۰درصد)، دی اکسید کربن (۲۶ درصد) و ازن. دیگر گازها که اهمیت کمتری دارند عبارت‌اند از: متان، اکسید نیتروژن، سولفید هگزافلوراید، هالوکربنها مثل فرئون و دیگر CFCها.

ترکیبات گازی عمده اتمسفری یعنی اکسیژن و نیتروژن (N۲and O۲) جزء گازهای گلخانه‌ای محسوب نمی‌شوند به این دلیل که گازهای دو ملکولی همسان مثل: N۲, O۲, H۲و غیره نقشی در جذب اشعه فروسرخ ندارند.

فعالیتهای صنعتی و کشاورزی انسان‌ها در افزایش این گازها نقش دارند. بیشترین اثر فعالیتهای انسانی بر افزایش گاز دی اکسید کربن است. موارد زیر نمونه‌ای از نقش انسان در افزایش این گازها می‌باشند:

سوخت‌های فسیلی و جنگل زدایی – افزایش دی‌اکسیدکربن.

چرای دامها و کشت‌های غرقابی مثل برنج - افزایش غلظت متان.

استفاده از CFCs در یخچال و فریزر و مبردها و ... .

علت

خورشید می‌تابد و زمین را گرم می‌کند. بخشی از نور هنگام ورود به جو منعکس می‌شود و باقی آن وارد اتمسفر شده و به زمین می‌رسد و آن را گرم می‌کند. زمین که گرم شده، شروع به تابش می‌کند. این انرژی در سالهای اخیر بیشتر شده و زمین در حال گرم شدن است. متان و CFC انرژی بیشتری را به دام می‌اندازند، اما دی اکسیدکربن مهم‌ترین بخش گازهای گلخانه‌ای است، زیرا حجم بیشتری از آن در اتمسفر وجود دارد.احتراق سوخت‌های فسیلی ( زغال سنگ، نفت و گاز ) دلیل اصلی ازدیاد بیش از حد دی اکسیدکربن است. اما برخی دیگر از دانشمندان با این نظر مخالفند. آنها می‌گویند که مطالعات انجام شده عموماً بر پایه مدلسازی‌های کامپیوتری است و آب و هوای زمین بسیار پیچیده تر از آن است که بتوان رفتار آن را پیش بینی کرد. اما مطالعاتی که در سال ۲۰۰۱، توسط تیمی از محققان انگلیسی انجام شد، نشان می‌دهد که طبق اطلاعات ماهواره‌ای ۳۰ سال گذشته، تشعشعی که از زمین به فضا فرستاده می‌شود، کاهش یافته‌است. این یعنی اثر گلخانه‌ای همگام با تولید بیشتر گازهای گلخانه‌ای، افزایش پیدا کرده‌است.

پروتکل کیوتو

این معاهده با هدف موظف ساختن کشورهای جهان به کاهش اثرات گازهای گلخانه‌ای و تبعات منفی گرم شدن زمین، میان کشورهای جهان به امضا رسید. معاهده در محل کیوتوی ژاپن و در دسامبر ۱۹۹۷ تنظیم شد و از مارس ۱۹۹۸ جهت امضاء کشورهای مختلف ارائه شد و در ۱۵ مارس ۱۹۹۹ نهائی شد. در این معاهده مشخص شده که تا چه سال و تا چند درصد از گازهای گلخانه‌ای کاسته شود. و گازهای مورد نظر عبارت‌اند از: دی اکسید کربن، متان، اکسید نیتروژن، سولفورهگزافلوراید، HFC‌ها و PFCها. همچنین کشورهای ثروتمند ضمن متعهد شدن به اجرای مفاد این عهدنامه موظف به کمک به دیگر کشورها در این زمینه شدند.

سازو کارهای انعطا ف پذیر پروتکل کیوتو

پروتکل کیوتو به منظور کاهش انتشار و تسهیل انجام تعهدات کشورهای توسع هیافته، سازوکا رهای انعطا فپذیری تحت عنوان سازوکا رهای مبتنی بر بازار در ماده ۱۲ و سایر مواد تنظیم کرده ا ست. بر اساس پروتکل کیوتو، اعضای متعهد (کشورهای توسع هیافته) م یتوانند با اجرای پروژ هها در سایر کشورها، سیاس تهای کاهش انتشار را از لحاظ اقتصادی توجی هپذیر کنند. بدین منظور پروتکل کیوتو برای ایجاد ساختار مبتنی بر بازار، سازوکا رهای زیر را در نظر گرفتها ست:

(CDM) - سازوکار توسعه پاک (JI) -ا جرای مشترک (ET) - تجارت ا نتشار

سازوکار توسعه پاک: این سازوکار شامل پروژ ههایی است که کشورهای توسعه یافته برای تحقق تعهدات خود در کاهش انتشار گازهای گلخان‌های و همچنین کمک به توسعه پایدار در کشورهای در حال توسعه اجرا کرده و به ازای کاهش انتشار حاصل از این پروژ هها، گواهی کاهش انتشار (CER)دریافت میکنند.

اجرای مشترک: پروژ ههایی هستند که با توجه به تجارب تکنولوژیکی کشورها، به منظور اجرای تعهد یا اخذ گواهی، ا ز سویب رخی کشورهای صنعتی در سایر کشورهای توسع هیافته به خصوص کشورهای با اقتصاد در حال گذار (اروپای شرقی)ا جرا م یشوند.

تجارت انتشار: با توجه به‌ای نکه کشورهای صنعتی عضو پروتکل کیوتو هر یک تعهدی مستقل دارند، اگر کشوری نتواند سهم تعهدات خود را در کاهش انتشار برآورده کند، م یتواند از کشورهای صنعتی دیگر که بیش از سهم تعهد خود کاهش انتشار داشت هاند مجوز انتشار خریداری کند.

در ماه نوامبر سال ۲۰۱۱، سازمان جهانی هواشناسیاعلام کرد که میزان گازهای گلخانه‌ای در جو به میزان بی‌سابقه‌ای افزایش یافته است.[۲]

 

sajad01 بازدید : 410 دوشنبه 28 بهمن 1392 نظرات (0)

نویسنده : محمود شیرینی                    کلاس05

LSD یک ماده تو هم زا

LSD یکی از قویترین داروهای توهم زای شناخته شده است که در سال ۱۹۳۸ بوسیله یک شیمیدان سوییسی به نام آلبرت هوفمن ساخته شد که به توسعه و گسترش داروها از ترکیباتی که در ارگات (یک قارچ که به گندم سیاه حمله می کند) موجود بودند علاقمند بود . با اینکه LSD بطور خالص سنتز می شود ، نشانه هایی از فعالیت بیولوژیکی اش می تواند با دنبال کردن تاریخچه قارچی که از آن مشتق شده است فهمیده شود .


 

sajad01 بازدید : 462 دوشنبه 28 بهمن 1392 نظرات (0)

نویسنده : محمود شیرینی                    کلاس05

 

آمین آروماتیک چیست؟

آمین آروماتیک

آمینهای آروماتیک ، ترکیباتی هستند که گروه آمین به حلقه آروماتیک یا هترو آروماتیک متصل است. با شناختی که از حلقه آروماتیک و ساختار نیتروژن وجود دارد، به‌سهولت می‌توان پیش‌بینی کرد که حلقه آروماتیک موجب افزایش قدرت اسیدی و کاهش خصلت بازی آمین‌های آروماتیک می‌شود.

روشهای تهیه آمین‌های آروماتیک
روش آزمایشگاهی
 
ساختمان نوعی پروتئین دارای آمین آروماتیک

رو

sajad01 بازدید : 343 دوشنبه 28 بهمن 1392 نظرات (1)

نویسنده : محمود شیرینی                    کلاس05

 

آب سنگین

آب سنگین (D۲O) نوع خاصی از مولکولهای آب است که در آن ایزوتوپهای هیدروژن حضور دارند. این نوع از آب کلید اصلی تهیه پلوتونیوم از اورانیوم طبیعی است و به همین دلیل تولید و تجارت آن تحت نظر قوانین بین المللی صورت گرفته و بشدت کنترل می شود.

 

«هارولد یوری» ،( ۱۸۹۳-۱۹۸۱)شیمیدان و از پیشتازان فعالیت روی ایزوتوپها که در سال ۱۹۳۴جایزه نوبل در شیمی گرفت،در سال ۱۹۳۱ میلادی «ایزوتوپ هیدروژن سنگین»را که بعدها به منظور افزایش غلظت آب مورد استفاده قرار گرفت، کشف کرد.
همچنین در سال «۱۹۳۳گیلبرت نیوتن لوئیس» شیمیدان و فیزیکدان مشهور آمریکایی و استاد هارولد یوری،توانست برای اولین بار نمونه آب سنگین خالص را بوسیله عمل الکترولیز بوجود آورد.
اولین کاربرد علمی از آب سنگین در سال در سال ۱۹۳۴توسط دو بیولوژیست بنامهای هوسی و هافر صورت گرفت. آنها از آب سنگین برای آزمایش ردیابی بیولوژیکی، به منظور تخمین میزان بازدهی آب در بدن انسان، استفاده قرار دادند.


 

sajad01 بازدید : 93 دوشنبه 28 بهمن 1392 نظرات (0)

نویسنده : فربد عرفانی                          کلاس01

 

اتر چیست ؟

نام‌گذاری اترها
 
ساختمان دی متیل اتر


برای نامیدن اترها ، معمولا دو گروه متصل به اکسیژن را نام می‌بریم و به دنبال آن ، واژه اتر را می‌آوریم. اگر دو گروه یکسان باشند، گفته می‌شود اتر متقارن است ( مانند دی اتیل اتر ، دی ایزوپروپیل اتر ). اگر دو گروه متفاوت باشند، اتر ، نامتقارن است مانند ترسیوبوتیل متیل اتر.


 

sajad01 بازدید : 461 دوشنبه 28 بهمن 1392 نظرات (0)

نویسنده : فربد عرفانی                          کلاس01

 

آمین آلیفاتیک

مقدمه


آمینها ، دسته وسیعی از مواد آلی نیتروژندار را تشکیل می‌دهند که در آنها ، اتم نیتروژن به یک یا دو یا سه گروه آلکیل و یا آریل متصل می‌باشد. آمینها بسته به تعداد گروههای موجود ، بعنوان نوع اول ، دوم و سوم تقسیم‌بندی می‌شوند. در این بخش ، آمینهای آلیفاتیک مورد مطالعه و بررسی قرار می‌گیرند.

نامگذاری آمینها

 

اسید آمینه گلیسین و گروه امینی

برای نامگذاری آمینها ، روشهای متعددی مورد استفاده قرار می‌گیرند. ساده‌ترین و مرسوم‌ترین آنها ، روش استفاده از کلمه آلکیل آمین یا آریل آمین می‌باشد. مانند:

• C6H11-NH2: سیکلو هگزیل آمین
• PhCH2)2NH): دی بنزیل آمین
• CH3-NH2: متیل آمین


برای نامگذاری آمینهای نوع اول ، از آمینو آلکان نیز استفاده می‌شود، مانند:

• C5H9NH2: آمینو سیکلو پنتان
• C2H5-NH2: آمینو اتان


برخی از آمینهای حلقه‌ای نام خاصی دارند و معمولا از این اسامی برای معرفی آنها استفاده می شود. آمینهای حلقه‌ای با نام
azacycloalkane نیز مشخص می‌شوند.
خواص آمینهای آلیفاتیک
تعدادی از آمینهای آلیفاتیک مانند 1 ,4- دی‌آمینو بوتان (
Putrescine) و 1 ,5- دی‌آمینو پنتان (Codaverine) سمّی هستند و از فاسد شدن گوشت و ماهی ایجاد می‌شوند. برخی دیگر مانند 2- متیل آزیریدین ، سرطانزا تشخیص داده شده‌اند.
با وجود این ، بسیاری از آمینها و مشتقات آنها ، دارای اثرات زیستی می‌باشند. از آن جمله پیپرازین (ضد انگل) ، هیستامین (تنگ کننده رگها) و نواکائین (بیهوش کننده) را می‌توان نام برد.
خواص فیزیکی و خصلت اسیدی و بازی آمینهای آلیفاتیک
آمینهای نوع اول ، دوم و سوم می‌توانند بعنوان دهنده و یا پذیرنده پیوند هیدروژنی عمل نمایند. ولی پیوند هیدروژنی آنها ضعیفتر از الکلها و آب می‌باشد و به همین علت ، آمینها نقطه ذوب و جوش پایینتری نسبت به الکلهای هم‌کربن دارند. مثلا نقطه جوش متیل آمین ، 6- درجه و متانول ، 64 درجه سانتی‌گراد می‌باشد. آمینهای کوچک با هر نسبتی در آب حل می‌شوند.

آمینها در مقایسه با الکل ، اسیدهای ضعیفتری می‌باشند، ولی با وجود این می‌توان به کمک بازهای قوی عمل پروتون‌گیری از آمینها انجام داد. خاصیت بازی آمینها قابل ملاحظه می‌باشد و قدرت بازی آنها بوسیله استخلاف کنترل می‌شوند. لازم به یادآوری است که آلکیل آمینها درمقایسه با آریل آمینها قدرت بازی بیشتری از خود نشان می‌دهند.

روشهای تهیه آمینهای آلیفاتیک

 

ساختمان یک نوع آمین


• از واکنش آمونیاک یا آمینهای نوع اول و دوم با هالیدهای آلکیل ، می‌توان آمینها را تهیه نمود. از فعل و انفعال آمونیاک با هالیدهای آلکیل ، ابتدا منوآلکیل آمین تولید می‌شود. برای جلوگیری از ادامه واکنش ، لازم است که غلظت هالید آلکیل کم انتخاب شود. معمولا نوع محصول واکنش به مدت زمان انجان واکنش ، طبیعت ، غلظت هالید آلکیل ، نوع هالوژن و نوع کربنی که هالوژن روی آن قرار گرفته است، بستگی دارد. با کلریدها ، واکنش قابل کنترل‌تر می‌باشد و در صورت استفاده از یدید آلکیل ، آمونیوم چهارتایی تشکیل می‌شود. اگر غلظت CH3I کم باشد، می‌توان آمینهای نوع دوم یا سوم را سنتز نمود.
• می‌توان با انجام واکنش آمیدور سدیم با یدیدهای آلکیل نوع اول در دمای پایین ، آمین نوع اول را بدست آورد. هالیدهای آلکیل نوع دوم و سوم به واکنش حذفی منجر می‌شوند و لذا برای تهیه آمین مربوطه مناسب نمی‌باشند.
واکنشهای شیمیایی آمینهای آلیفاتیک
آمونیاک و آمینهای آلیفاتیک در نقش بازهای قوی ، هسته خواه قوی و همچنین بعنوان اسید ضعیف در واکنشهای گوناگون شرکت می‌کنند. ساده‌ترین واکنش آمینها ، پروتون‌دار شدن آنهاست که به نمک مربوطه منجر می‌شود. به همین علت ، معمولا از آمینها جهت جذب اسیدهای آزاد شده در فعل و انفعالات شیمیایی استفاده می‌شود.

 
sajad01 بازدید : 515 دوشنبه 28 بهمن 1392 نظرات (0)

نویسنده : فربد عرفانی                          کلاس01

 

اتیلن

اتیلن ، ساده ترین هیدروکربن غیر اشباع بوده و اولین عضو از گروه آلکنها می‌باشد. فرمول شیمیایی آن C2H4 بوده ، بین دو اتم کربن پیوند دوگانه وجود دارد. به دلیل وجود این پیوند دوگانه ، اتیلن ایزومر صورت‌بندی ندارد، یعنی دو نیمه مولکول نمی‌توانند با چرخش حول پیوند دوگانه ، صورت‌بندی خود را تغییر دهند.

اتیلن دارای ساختمان مسطح بوده ، زاویه بین دو اتصال کربن - هیدروژن ، 117 درجه سانتی‌گراد می‌باشد. یعنی مقداری بسته‌تر از زاویه 120 درجه که برای هیبریداسیون sp2 مناسب می‌باشد. اتیلن گازی بیرنگ و آتش گیر بشمار می‌رود و در ترکیب نفت و گاز طبیعی یافت می‌شود.


تاریخچه
 


در سال 1795، اتیلن را گاز اولفین می‌نامیدند. اولین سنتز ترکیبات اتیلن (دی کلرو اتان) در سال 1795 توسط شیمیدان هلندی انجام شد. در اواسط قرن 19 به علت اینکه
C2H4 یک هیدروژن از C2H5 اتیل کم داشت، پسوندهای ene (از ریشه یونانی) به آخر اتیل اضافه کرده و از آن به بعد گاز اولفین را اتیلن می‌نامند. تا سال 1852 در متون علمی واژه اتیلن استفاده می‌شد.

در سال 1866 "هافمن" شیمیدان آلمانی ، سیستم نامگذاری هیدروکربنها را بر پایه آلکان بنا نهاد. در این سیستم ، هر هیدروکربنی که از آلکان مربوطه دو هیدروژن کمتر داشت، آلکن با فرمول CnH2n و اگر چهار هیدروژن از آلکان مربوطه کم داشت آلکین CnHn نامیده می‌شود. طبق این نامگذاری ، اتیلن به اتن تغییر نام یافت. انجمن بین المللی شیمیدانها در سال 1892 این نام را وارد نامگذاری IUPAC کردند و از آن تاریخ تا امروز ، این نام در متون علمی و کتابهای درسی و ... مورد استفاده قرار می‌گیرد.

 

 

 

 

مشخصات ترکیب

نام متداول

نام آیوپاک (علمی(

جرم مولکولی

فرمولشیمیایی

دانسیته

قابلیتانحلال

نقطه ذوب

نقطه جوش

حد انفجار

اتیلن

اتن

28.05gr/mol

C2H4

1.26gr/lit

250mL در یک لیتر آب صفر درجه

4104°K

169.4°K

2.7 تا 36%

 

روشهای تولید


اتیلن در صنایع پتروشیمی با روش کراکینگ با بخار آب تولید می‌شود. در این فرآیند هیدروکربنهای گازی و محلولهای سبک هیدروکربن حاصل از نفت به مدت بسیار کوتاه در دمای 950 - 750 درجه سانتی‌گراد حرارت داده می‌شوند. عموما در این واکنش هیدروکربنهای بزرگ به هیدروکربنهای کوچک شکسته شده ، هیدروکربنهای اشباع با از دست دادن هیدروژن به هیدروکربنهای غیر اشباع تبدیل می‌شوند.

محصول این واکنش مخلوطی از انواع هیدروکربنهاست که اتیلن عمده ترین آن می‌باشد. مخلوط را بوسیله متراکم سازی و تقطیر جز به جز جداسازی می‌کنند. روشهای دیگر ، هیدروژن‌دار کردن استیلن با استفاده از کاتالیزور و آبگیری از اتانول می‌باشد.
واکنشهای شیمیایی مربوطه
آلکنها به علت داشتن پیوند دوگانه در واکنشهای افزایشی شرکت می‌کنند. هالوژنها با اتیلن واکنش داده و تولید هالو اتان می‌کند. با افزودن آب به پیوند دوگانه اتانول تولید می‌شود، اما سرعت واکنش بدون حضور کاتالیزور پایین می‌باشد. در حضور کاتالیزورهای فلزی نظیر پلاتین ، نیکل و ... و فشار بالا ، اتیلن ، هیدروژن‌دار شده ، به اتان تبدیل می‌شود. اتیلن در حضور پراسیدها به اتواکسید که یک ترکیب حلقوی است تبدیل می‌شود. اتیلن در حضور رادیکالهایی که واکنش پلیمریزاسیون را آغاز می‌کنند، به پلی اتیلن پلیمریزه می‌شود.

 

کاربردهای اتیلن


اتیلن ماده اولیه مهم برای تولید بسیاری از ترکیبات آلی پر مصرف در صنعت بشمار می‌رود. اتیلن به صورت گسترده در صنعت پلاستیک مورد استفاده قرار می‌گیرد. اتیلن با پلیمریزه شدن ، پلی اتیلن را تولید می‌کند که یک پلاستیک بسیار مهم است. با تکرار شدن ، پیش ماده پلی وینیل کلرید (
PVC) را تولید می‌کند. با ترکیب شدن ، بنزن ، اتیل بنزن ایجاد می‌کند که ماده اصلی پلی استر می‌باشد.

اتیلن ، نوعی هورمون گیاهی است که باعث رسیدن میوه‌ها ، باز شدن شکوفه‌ها و گلها و همچنین ریزش برگها در پاییز می‌شود. به دلیل این خاصیت در کشاورزی مورد استفاده قرار می‌گیرد. برای جلوگیری از خراب شدن میوه‌هایی مانند سیب ، گلابی و موز ، در حمل و نقل یا انبار ، آنها را کمی نارس می‌چینند و قبل از وارد کردن به بازار ، تحت تاثیر اتیلن قرار می‌دهند تا رسیده شود.


نحوه شناسایی اتیلن


اتیلن ، رنگ قهوه‌ای محلول برم در تتراکلرید کربن را بی‌رنگ می‌کند و رنگ بنفش محلول سرد و رقیق پرمنگنات پتاسیم را از بین می‌برد و در نتیجه واکنش رسوبات قهوه‌ای
MnO2 حاصل می‌شود. در اسید سولفوریک سرد و غلیظ حل می‌شود.

 
sajad01 بازدید : 954 دوشنبه 28 بهمن 1392 نظرات (0)

به نام خداوند جان وخرد

نویسنده : زین العابدین اسدی

کلاس01

اثر گلخانه ای چیست ؟

اثر گلخانه ای (Greenhouse Effect)


اثر گلخانه ای شامل به دام انداختن وبرگرداندن تابش گرمائی(مادون قرمز) به سطح زمین توسط گازهای گلخانه ای است واگر اثر گلخانه ای نبود حدود 10 تا 15 درجه سانتیگراد از دمای کره زمین در طول شب کاسته می شد و به این ترتیب شبهای بسیار سردی در انتظار ما بود. اما مکانیسم این فرآیند چگونه است؟
درقسمت زیر سعی میشود قدری بیشتر راجع به برهمکنش نور خورشید با سطح زمین بحث شود.

 

تابش خورشیدی (SolarRadiation )

 

ناحیه طیف

انتقالات انرژی

اشعه x

فرا بنفش ومرئی

فرو سرخ

مایکروویو

فرکانسهای رادیو ای

شکستن پیوندها

انتقالات الکترونی

ارتعاشی(کششی وخمشی)

چرخشی

اسپین هسته ایnmr) )

واسپین الکترونی (esr )

 


 

sajad01 بازدید : 465 دوشنبه 28 بهمن 1392 نظرات (0)

به نام خداوند جان وخرد

نویسنده : زین العابدین اسدی

کلاس01

آنالیز بنزین از نفت

اطلاعات اولیه


نفت ، مخلوطی پیچیده از آلکانها ، سیلکو آلکانها و هیدروکربنهای آروماتیک است. در نفت خام ، هزاران ماده مرکب وجود دارد و ترکیب درصد واقعی نفت بسته به جاهای متفاوت ، تغییر می‌کند. مثلا نفت های خام پنسیلوانیا ، بیشتر از هیدروکربنهای زنجیری است، در حالی‌که نفت خام کالیفرینا ، بیشتر ترکیبات آروماتیک دارد. ترکیب درصد نفت را می‌توان بر حسب گستره‌های نقطه جوش طبقه‌بندی کرد. هر یک از برش‌های حاصل ، کاربردهای مهمی دارد. پالایش نفت ، جداسازی اجزایی با گستره نقطه جوش معینی است که بوسیله فرایند تقطیر جزء به جزء صورت می‌گیرد.

 


جز هیدروکربنی

گستره اندازه ملکولها

گستره نقطه جوش

کاربرد

گاز

C1-C4

-160 تا 30

سوخت گازی ، تولید H2

بنزین دست اول

C5-C12

30 تا 200

سوخت موتور

نفتسفید

C12-C18

180 تا 400

سوخت دیزل ، سوخت کوره

نفت سوخت

 

 

کراکینگ

روان کننده‌ها

C17 به بالا

350 به بالا

روان کننده‌ها

پارافین‌ها

C20 به بالا

مواد جامد با نقطه ذوبکم

شمع - کبریت

آسفالت

C36 به بالا

باقیمانده صمغی

تسطیح جاده‌ها


 

مراحل فرآیند تقطیر جزء به جزء


نفت خام را تا حدود
˚400C گرم می‌کنند تا بخاری داغ و مخلوطی سیال تولید کند که وارد برج تقطیر می‌شود. در این برج ، بخارها بالا می‌روند و در نقاط مختلف در طول برج ، متراکم و به مایع تبدیل می‌شوند. اجرایی که نقطه جوش کمتری دارند (یعنی آنها که فرارترند)، بیشتر از اجزایی که نقطه جوش بیشتری دارند، به حالت گازی باقی می‌مانند. این تفاوت در گستره‌های نقطه جوش امکان می‌دهد که اجزای نفت از هم جدا شوند، به همان طریق که در یک تقطیر آب و الکل ، بطور جزئی از هم جدا می‌شوند.

بعضی از گازها ، مایع نمی‌شوند و از بالای برج بیرون می‌روند. باقیمانده تبخیر نشده نفت نیز در ته برج جمع می‌شود. محصولاتی که از جدا سازی نفت بدست می‌آیند، به این ترتیب است. بنزین دست اول که از تقطیر جزء به جزء نفت بدست می‌آید، عمدتا شامل هیدروکربنهای خطی است که به‌سرعت می‌سوزد و به‌عنوان سوخت برای وسائل نقلیه موتوری مناسب نیست. آتشگیری سریع این ماده ، سبب کوبش یا صدای تق‌تق در موتور می‌شود که توان موتور را کم می‌کند و به آن آسیب می‌رساند.


درجه اکتان بنزین
 


• برای درجه بندی خواص کوبش نسبی بهترین‌ها مقیاس دلخواه معین شده است. هپتان نرمال که از نوع بنزین اول است و کوبش زیادی دارد و به‌عنوان بنزین در نظر گرفته شده است و درجه اکتان آن صفر است. از طرف دیگر به 2 ، 2 ، 4-تری متیل پنتان (ایزو اکتان) که از این لحاظ بسیار عالی است، درجه اکتان 100 نسبت داده شده است.
• برای تعیین تعیین درجه اکتان نوعی بنزین ، آن را در یک موتور استاندارد بکار می‌گیرند و خواص کوبشی آن را ثبت می‌کنند. در این عمل ، رفتار مخلوط‌هایی از n- هپتان و ایزواکتان را با رفتار بنزین مورد نظر مقایسه می‌کنند. درصد ایزواکتان مخلوطی را که خواص کوبش یکسانی با رفتار بنزین مورد آزمایش دارد، درجه اکتان آن بنزین می‌نامند.
• درجه اکتان بنزین دست اول با تبدیل کاتالیزوری و اکتان افزاینده‌ها ، زیاد می‌شود. فرآیند تبدیل کاتالیزوری برای تولید هیدروکربن‌های شاخه‌دار و آروماتیک بکار می‌رود. هیدروکربنهای خطی با عدد اکتان کم را می‌توان تحت تاثیر کاتالیزورهای خاص ، مانند پلاتین بسیار ریز شده ، به ایزومرهای زنجیری شاخه‌دار ، که عدد اکتان بالاتری دارند، تبدیل کرد. تبدیل کاتالیزوری برای تولید هیدروکربنهای آروماتیک مثل بنزین و تولوئن نیز بکار رود. در این عمل ، از کاتالیزور‌های متفاوت و مخلوط‌های نفت استفاده می‌شود. مثلا هرگاه بخاری‌های نفت ، نفت سفید و اجزای نفتی سبک را از روی کاتالیزور مس در دمای ˚650C عبور دهیم، درصد زیادی از مواد اصلی ، به مخلوطی از هیدروکربنهای آروماتیک تبدیل می‌شود. از این مخلوط از تقطیر جزء به جزء ، بنزین ، تولوئن ، کسیلن و موادی نظیر آنها جدا می شود.
• عدد اکتان مخلوط معینی از بنزین را می‌توان با افزایش عوامل ضد کوبش یا اکتان افزاینده‌ها بالا برد. پیش از سال 1975 ، متداول‌ترین عامل ضد کوبش ، تترااتیل سرب ، C2H3) 4Pb) بود. افزایش 3g تترااتیل سرب در هر گالن ، عدد اکتان را 10 تا 15 درجه بالا می‌برد و پیش از آنکه سازمان حفاظت محیط زیست (EPA) کاهش محتوای سرب بنزین را ضروری بداند، هم بنزین معمولی و هم بنزین سوپر در هر گالن بطور متوسط 3g تترااتیل سرب یا تتراامتیل سرب ، C2H3) 4Pb) ، داشت.


افزودنی‌های بنزین


ترکیبات سربدار فوق‌العاده سمی هستند و نقطه جوش کم تترااتیل سرب بر این خطر می‌افزاید. اما بر اثر دو اقدامی که از طرف سازمان محیط زیست به عمل آمد، میزان سرب در محیط بطوری موثر کاهش یافت. نخستین اقدام ، تصمیم گیری درباره استفاده از مبدل‌های کاتالیزوری پلاتین‌دار بود که صدور منوکسید کربن و اکسیدهای نیتروژن‌دار را کاهش دهد، ولی در این صورت لازم بود که بنزین‌های عاری از سرب مصرف شود، زیرا سرب ، کاتالیزور پلاتین را از فعالیت می‌اندازد.

در آغاز سال 1975 ، اتومبیل‌های جدید مجبور به استفاده بنزین‌های عاری از سرب شدند تا مبدل کاتالیزوری آنها محفوظ بماند و مقدار سرب تولید شده در هوا نیز کاهش یابد. برنامه کاهش سرب در بنزین به این نتیجه انجامید که مقدار آن به 0.1g در هر گالن برسد و هدف نهایی بنزینی کاملا عاری از سرب بود. با کم شدن مصرف تترااتیل سرب ، لازم بود اکتان افزاینده‌های دیگری به بنزین افزوده شود تا درجه اکتان آن بالا رود. این مواد اکتان افزاینده عبارتند از تولوئن ، 2 - میتل- 2- پروپانل ، میتل - ترشیوبوتیل اتر (MTBE) ، متانول و اتانول ، در سال 1984 متداول‌ترین اکتان افزاینده MTBE بود که برای نخستین بار در فهرست 50 ماده شیمیایی عمده اضافه شد.


بهینه سازی سوخت بنزین

 

 


مخلوط‌های از بنزین شامل متانول و اتانول نیز به‌عنوان سوخت مصرف می‌شوند. سازمان حفاظت محیط زیست و تمام کارخانه‌های اتومبیل سازی آمریکا ، مصرف مخلوط‌های بنزین _اتانول را که تا 10% اتانول داشته باشند، پذیرفته‌اند. ولی متانول بیشتر مورد توجه است، زیرا به‌عنوان افزاینده اکتان چند مزیت دارد.

متانول وقتی بطور مناسبی با بنزین مخلوط شده باشد، اقتصادی‌تر است، درجه اکتان بالاتری دارد و صدور میزان ذرات ، هیدروکربنها ، منوکسید کربن و اکسید‌های نیتروژن را می‌کاهد. ولی بزرگترین عیب متانول به رطوبت مربوط می‌شود. مقدار کمی رطوبت ، مخلوط اتانول - بنزین را ناپایدار می‌کند و خوردگی فلز موتور مسئله‌ای جدی می‌شود.

مسئله رطوبت اتانول با استفاده از الکل دیگری (اتانول ، پروپانول‌ها) به‌عنوان کمک حلال در مخلوط‌های متانول ، حل شد. سازمان حفاظت محیط زیست ، چند مخلوط متانولی را که با استاندارد‌های صدور مواد از وسایل نقلیه موتوری مطابقت داشت و بنزینی با اکتان بالا بود، تصویب کرد. غالب مخلوط‌های متانولی حدود 2.5% متانول ، 2.5% ترشیو - بوتیل الکل ، 95% بنزین و یک ماده بازدارنده خورندگی دارند.

 
sajad01 بازدید : 379 دوشنبه 28 بهمن 1392 نظرات (0)

به نام خداوند جان وخرد

نویسنده : زین العابدین اسدی

کلاس01

ارزیابی نفت و نحوه تقسیم بندی

نفتی که از چاه بیرون می آید همواره مقداری آب و رسوبات گازی به همراه دارد. در واحد بهره برداری هدف آن است که این مواد را از نفت خام جدا کنند . نفت خام را به پالایشگاهها می فرستند (جهت تصفیه شدن) و یا اینکه از طریق ترمینال ها آن را صادر می کنند. می دانیم که پالایشگاهها بر اساس نوع خوراک آنها طراحی می شوند.
در این واحد ابتدا یک سری آزمایشات مقدماتی مثل اندازه گیری مقدار
ash, N2,O2,H2O را روی نفت خام انجام می دهند. پس از آن به شناخت ترکیب نفت خام بااستفاده از ستون تقطیر و روش غیر پیوسته می پردازند.

دراین روش مقداری نفت خام را داخل Flask قرار داده و حرارت می دهند.

در بالای Flask ستون تقطیر قرار دارد و کمی بالاتر یک Condenser قرار گرفته است. در آنجا یک دماسنج قرار دارد که با استفاده از آن Cut point ها رامی توانیم بخوانیم و برش های مختلف را در زمان مناسب جدا کنیم . در مورد گازهای هیدرو کربوری سبک با استفاده از هوا مایع گازهایی مثل پروپان و بوتان را مایع می کنند. هر قدر عمل تقطیر ادامه یابد و جداسازی بیشتر صورت گیرد، هیدروکربورهای داخل سنگین تر می شوند، اما اگر دما از حد مشخص بالاتر رود عمل کراکنیگ صورت می گیرد. چون هدف ما پی بردن به تفکیک نفت خام می باشد باید به شدت مراقب باشیم تا دما از یک حدی بالاتر نرود و کراکنیگ صورت نگیرد. در ستون تقطیر آزمایشگاهی ابتدا NGL ، آب ، بنزین ، نفت سفید و گاز جدا می شوند.
 در این مرحله هیدروکربورهای باقی مانده به شدت ویسکوز شده اند و باید از فرآیندهای دیگری برای ادامه عملیات استفاده کنیم. بعد از این مراحل هریک از ترکیبات بدست آمده را به واحدهای بعدی می فرستند تا آزمایشاتی برای تعیین مشخصات هریک از آنها انجام گیرد. روغن ها را نیز برای تصفیه به سایر واحدها می فرستند. دیواره ستون تقطیر ذکرشده در فوق را دو جداره و جیوه اندود می کنند تا از هدر رفتن گرما جلوگیری شود.

اگر بخواهیم نفت خام را صادر کنیم، باید خصوصیات آن مانند API، درصد ناخالصی و ویسکوزیته آن را تعیین کنیم.

اساس تقطیر نفت خام بر مبنای اختلاف نقطه جوش است و در تقطیر نفت خام نمی توانیم یک ترکیب را بطور خالص جدا کنیم. بهمین خاطر از محدوده نقطه جوش استفاده می کنیم: مثلاً برش °C 65-15 یا برش 100-65 درجه سانتیگراد.
در این آزمایشگاه روشهای
U.O.P, ASTM می توانند مورد استفاده قرار گیرند.

تقطیر بصورت batch است و دمای حمام را تا °C 20- قرارمی دهیم تاگازهایی مثل متان و اتان و.... را جدا کنیم، بعداً طبق چارت تقطیر عمل تقطیر را انجام می دهیم تا درصد رانسبت به خوراک اولیه بدست آوریم.
اگر دما را به 200 برسانیم فشار را باید پایین آوریم تا برشها
Crack نشوند.بعد از تهیه برش ها آنها را به آزمایشگاه می فرستیم. مثلاً برا ی بنزین عدد اکتان مهم است و باید عدد اکتان تعیین شود.قیر و آسفالت و روغن را با دستگاه دیگری جدا می کنیم.
در این قسمت از دستگاههایی چون
Separators ، Reflox و Condenser استفاده می شود.

همانطور که قبلاً اشاره شد در مورد نفت خام جداسازی مواد بصورت خالص بی معناست و فقط برشها جدا میشوند. دراینجا برای جداکردن برشهای °C 65-15 ابتدا شیرها را باز کرده و پس از جدا کردن مواد، شیرها را می بندیم و عملیات تقطیر را ( با توجه به دما ) ادامه می دهیم .
اگر هیدروکربورها خیلی حرارت ببیند، عمل کراکنیگ صورت می گیرد و چون ما نمی خواهیم این کار صورت بگیرد، در اینجا با اعمال فشارهای مختلف عمل جداسازی انجام می پذیرد.
در بخشهای دیگر ستون تقطیر عمل روغنگیری انجام می پذیرد که این عملیات در حدود فشارهای بین یک تا ده میلی متر جیوه انجام می پذیرد.
با داشتن وزن هر برش و داشتن وزن خوراک اولیه می توان درصد وزنی هر برش و درصد حجمی هر برش را بدست آورد. همچنین می توان وزن مخصوص هر برش رانیز بدست آورد.

از پارامترهای دیگر قیمت گذاری نفت خام بر اساس منحنی تقطیر(که S شکل است) صورت می پذیرد و برای هر محصول تستهای ویژه آن محصول صورت می گیرد:

 

1. عدد اکتان ( gasolin)
        2. نقطه دودی (kerosine)
        3. در مورد روغنها باید عملیات تصفیه روغن صورت بگیرد.

همچنین در واحد نفت خام بخش تفکیک و ارزیابی ترکیبات C1-C 100 و ایزومرهای آنها وجود دارد. نفت خامی که گاز آن استخراج شده باشد به آن نفت مرده می گویند.
نفت پس از اینکه تصفیه شد به خطوط لوله منتقل می شود. قبل از اینکه نفت به خطوط لوله انتقال داده شوند، باید یک سری آزمایشات جهت تشخیص مشخصات نفت انجام گیرد تا شناسنامه نفت خام تعیین شود.
مـا بایـد بـه ایـن نکتـه تـوجـه داشته باشیم که نفت خام برداشت شده از مخازن به مرور زمان تغییر خاصیت می دهند و سنگین تر می شوند.
همچنین نفت خام موجود در خط لوله از ترکیب نفت مخازن مختلف است وخواص آن نیز معمولاً متفاوت است. بنابراین بررسی خواص متفاوت آن باید صورت گیرد.
در مرحله تقطیر ابتدا
NGL بنزین جدا می شود و عناصر سبک دربالا جداسازی شده و عناصر سنگین در پایین ستون جمع آوری می شوند. با داشتن وزن اولیه و وزن مواد بدست آمده، درصد مواد مختلف بدست می آیند و از آنجا منحنی تقطیر رسم می شود.
روشهای آزمایشگاهی تقطیر عبارتند از:
ASTM ،U.O.P و I.P

از کارهای مهمی که در بخش تقطیر نفت خام صورت می گیرد عبارتند از:

1. تعیین وزن مخصوص
    2. تعیینAPI
    3. درصد ناخالصی ها ، نظیر گوگرد، نیتروژن و غیره
    4. تعیین ویسکوزیته نفت
    5. سبک یا سنگین بودن نفت خام
    6. تعیین درصد فرآورده های نفتی

در روش های ASTM ستون تقطیر دارای حدود 32-30 سینی می باشد. این ستون بصورت دو جداره است. ایـن واحـد بصـورت batch عمل می کند. در بـالای ستون یک دماسنج قرار دارد که دما را نشان می دهد.
محدوده برای جمع آوری محصولات متغیر است.
از دمای
°C 20- برای جمع کردن گازهای سبک نظیر متان تا دمای °C 150 برای جمع آوری ترکیبات سنگین در انتهای ستون استفاده می شود.

واحد تفکیک و تقطیر نیمه صنعتی نفت خام
 

پس از بهره برداری نفت خام از چاه و انتقال آن به مراکز بررسی، باید پتانسیل های آن را مورد بررسی قرار داد، به همین علت یک سری آزمایشات دقیق روی نفت خام انجام می گیرد تا بتوانیم مشخصات و ترکیبات موجود در نفت خام را ارزیابی کنیم.
این واحد در واقع 2 کار عمده انجام می دهد.

 

1. سرویس دهی به واحدهای دیگر و پتروشیمی
    2. پروژه های تحقیقاتی در مورد نفت و ترکیبات آن و سرویس دهی در مورد صادرات

نفت خام بر اساس استانداردهای موجود تقطیر وبعلاوه روی نفت خام مطالعاتی انجام می دهند و برشهای مختلف را جدا می کنند و مسائل مختلفی را نظیر درصد گوگرد، Flash point, Dew point و ... را بررسی می کنند.
در این واحد از یک دستگاه ، شبیه تقطیر استفاده می شود این دستگاه حدود 65 سینی از نوع
bubble cap دارد که در فشار اتمسفر کار می کند، همچنین می توان در شرایط خلاء نیز با آن کار کرد.

اصول کار دستگاه شبیه تقطیر بر اساس اختلاف در نقطه جوش ترکیبات مختلف می باشد. چون ترکیبات نفتی دارای برشهای مختلف با نقطه جوش متنوعی هستند.
در این دستگاه ستونی وجود دارد که ستون تقطیر نام دارد دمای آن از پایین به بالا در حال افزایش تدریجی است. ترکیبات سنگین در انتهای ستون و ترکیبات گازی در بالای ستون جمع می شوند.

 

اساس کار دستگاههای تقطیر به 2 صورت می باشد که عبارتند از:

قسمت پیوسته (سیستم) Continous
    قسمت (سیستم) Batch

در سیستم پیوسته (که اساس کار این دستگاه شبیه تقطیر است ) همه محصولات جدا شده و هر کدام همزمان و در یک سیستم دقیق جمع آوری می شوند. یعنی می توان در یک لحظه تمام محصولات و برشهای نفتی را جمع کرد.
در سیستم
Batch با توجه به اینکه در هر دمای خاصی یک ترکیب به دمای جوش می رسد با افزایش تدریجی دما هر محصول و برش خاصی به ترتیب جمع آوری می شود، پس زمان زیادتری لازم داریم.

 

اصولاً جهت مطالعات روی ترکیبات و برشهای نفتی 2 روش عمده وجود دارد که عبارتند از:

1. روش برج تقطیر
    2. روش استفاده از نرم افزار

البته استفاده از نرم افزار برای دقت محاسبه برشهای آن و خواص سیالی دقیق تر است. اما چون در صنعت به اتکای کارهای آزمایشگاهی پروژه ها را تعریف می کنند، لازم است که دریک مقیاس نیمه صنعتی این آزمایشات انجام شود تا بتوانیم نظر مسؤلین صنعت نفت را به خود جلب کنیم . مثلاً تولید 20 بشکه به 20 لیتردر یک مقیاس نیمه صنعتی .
از این ستون تقطیر برای کارهای تحقیقاتی، تولیدی و شبیه سازی و غیره استفاده می شود.
ظرفیت دستگاه حدود 15 لیتر است. در قسمت بالایی بخارات را مایع می کنیم و سپس در پایین از طریق یک گیرنده آن را جمع آوری می کنیم.
از آب و یا الکل به عنوان مایع سرد کننده در سیستم استفاده می شود. در این میان یک سری تستهای جانبی روی نفت خام و یا ‍فرآورده های نفتی انجام می دهند.
از جملـه کارهای دیگــر تعیین دقت ریـزش گازوئیل است. تعیین رنگ نفت نیز از جمله کارهای دیگر است.
از طریق دستگاه تقطیر و
AD-4 یک منحنی، D-8 بدست می آید که از طریق نقطه جوش حاصل می گردد.(Automatic distillalion)

دستگاه پیلوت تقطیر
دستگاه موجود در این بخش می تواند چند شبکه تولید داشته باشد. به این شکل که به 2 صورت پیوسته و بسته کار می کند، می توان حرارت را به صورت بخار ویا به صورت الکتریکی اعمال کرد. اگر از روش پیوسته استفاده شود دستگاه با یک سرعت ثابت تغذیه می شود. در این حالت در اواسط مسیر ستون تقطیر، نیزمحصول خواهیم داشت. ولی در سیستم بسته فقط محصول بالاسری را خواهیم داشت. دستگاه دارای 15 سینی است.
ترکیبات نفتی را فقط تا حد خاصی می توان حرارت داد و اگر به حرارت بالاتری در بعضی جاها نیاز داشته باشیم می توانیم فشار خلاء را پایین بیاوریم. این سیستم این امکان را دارد که خلاء را تا 10 میلی بار پایین آورد.
5 مخزن در کنار دستگاه دیده می شود که هر یک از محصولات وارد آنها می شود. در این دستگاه به صورت یک در میان بین سینی ها دما داریم و نیز می توانیم با سرنگ نمونه برداری کنیم. به همین دلیل این دستگاه برای کارهای تحقیقاتی کاربرد زیادی دارد.
از آنجایی که سیستم بسته است ( برای کاهش امکان خطر) با استفاده از سیستم تولید هوا مایع که هوا را در دمای
°C196- مایع کرده است- ترکیبات سبک ترا ز C3 را به حالت مایع در می آورند. با استفاده از سیستم هوا مایع می توان از یک سری به همراه تجهیزات الکل برای مایع کردن گازهای سبک استفاده کرد.

 

دستگاه CHROMPACK
برای جداسازی ترکیبات هیدرو کربوری به کار می رود.

دستگاه GC


در این بخش یافت می شود که قبلاً شرح داده شد.واحد تقطیر و تفکیک نیمه صنعتی یکی از بخشهای مکمل مهندسی نفت است.
دستگاه پیلوت تقطیر بیشتر برای کارهای تحقیقاتی استفاده می شود. برای خنک کردن بخارات سبک از یک حمام استفاده می شود که تا دمای 35 درجه زیر صفرخنک می کند.
هر قدر برگشت بیشتر باشد محصول خالص تر خواهد بود و زمان تقطیر در این صورت بیشتر می شود و تفاوت حالت
Continous, batch در این است که در حالت های batch ورودی یکطرفه است و خروجی بطور پیوسته به بیرون می رود.

کاربردهای دستگاه پیلوت تقطیر (Fischer )

 

1. شبیه سازی شرایط پالایشگاه
        2. تولید بعضی از محصولات ویژه درحد چند تن
        3. کارهای تحقیقاتی
        4. تحقیقات بر روی کاهش خسارت در تغییرات خوردگی
        5. پالایشگاهها

 

یکی دیگر از تفاوتهای روش Continous , batch این است که در روش batch ما در هر لحظه درستون تقطیر فقط یک برش داریم اما در روش پیوسته در هر لحظه در ستون تقطیر بطور همزمان چند برش نفتی خواهیم داشت .

دستگاه Automatic distillation) AD-4)
برای تبخیر هیدروکربورهای سبک به کار می رود.

 

انواع سینی های موجود در ستون تقطیر عبارتند از:

1. ( perforated) : مشبک


    2. bubble cap .

آزمایشگاه تفکیک: ( separation lab.)
در این آزمایشگاه در یک دستگاه تقطیر
cm³ 100 از نمونه نفت را مورد تفکیک قرار می دهند و با استفاده از منحنی ها نقطه D-86 را بدست می آورند.

آزمایشگاه تصفیه روغن
در این آزمایشگاه کارهای زیر صورت می گیرد.

 

1- اندازه گیری برشهای روغنی ،
2- آسفالتین ،
3- مقدار آب و نمک نفت و
4- تعیین نقاط جوش برشهای سنگین

آزمایشگاه شناسایی هیدروکربورهای نفتی

 


محصول بالای ستون تقطیر و ترکیبات سبک را در اینجا آنالیز می کنند. در این قسمت از دستگاه
GC استفاده می شود.
یک دستگاه دیگر نیز گروههای هیدروکربوری را شناسایی می کند. اما محدودیت دمایی دارد. نام این دستگاه
PIONAAnalyzer است و بالای °C 220 را نمی تواند اندازه گیری کرد.
چون هر کدام از برشهای نفتی دارای خواص منحصر بفرد است، با استفاده از منحنی های مخصوص که بصورت پیک هایی است به عنوان خروجی دستگاه(
GC ) محسوب می شود، می توان به این طریق برشهای نفتی را تعیین کرد.

واحد قیر و راهسازی

 


از قیر برای منظور های مختلفی استفاده می شود که می توان به موارد زیر اشاره کرد:

1. در راهسازی
    2. در قطعات الکتریکی برای اینکه اتصال کوتاه اتفاق نیفتد و برای عایقکاری نیز استفاده می شود.
    3. در درزبندی معمولاً بین قطعات بتونی یک لایه قیر می ریزند تا انبساط و انقباض آنها را کنترل کند و صدمه ای وارد نشود.
    4. در پوشش زیر بدنه اتومبیل و جلوگیری ازاکسید شدن قطعات استفاده می شود.

به طور کلی قیر را به 3 طریق می توان تهیه کرد که عبارتند از:

 

1. باقیمانده نفت خام در فرآیند پالایش در پالایشگاهها پس از اینکه به وسیله روشهای فیزیکی آب و مواد معدنی آنها جدا شده باشد .
    2. قیرهای طبیعی : که در اثر مهاجرت نفت خام به سطح زمین و تحت تاثیر هوازدگی و تبخیر به قیر طبیعی تبدیل می شوند.
    3. قیر زغال سنگ: قطران حاصل از عملیات کوره بلند است (قطرانCoaltar ) اگر قطران را بدون وجود اکسیژن حرارت دهند بهPeech ( قیرزغال سنگ ) تبدیل می شود.

تقریباً بدترین نفت خام، بهترین نفت خام برای تولید قیر است. برعکس بهترین نفت خام (سبک ترین)
آنها، بدترین نوع برای تولید قیر است. آنچه که در ایران تولید می شود، نفت خام حدواسط است که چندان برای تولید قیر مناسب نمی باشد.
قیر جزء سیالات غیر نیوتینی است. همچنین می دانیم که تغییرات آن نسبت به دما بسیار زیاد است. از آنجا که قیر جامد وزن مخصوص بیشتری نسبت به قیر مایع دارد، در حین فرآیند ذوب در انجام عمل
Convection motion ایجاد اختلال می کند. زیرا قیر جامد در زیر قسمت ذوب شده و داغ قرار می گیرد.
قیر را معمولاً برای مصرف در حلال های نفتی حل می کنند و یا از مخلوط آن بصورت امولسیون با آب استفاده می شود. وجود آسفالتن در قیر باعث می شود که حجم قیر بالا رود و وزن مخصوص آن پایین بیاید. همچنین آسفالتن باعث بالا رفتن ویسکوزیته قیر می شود و به آن حالت شکنندگی می دهد. وجود رزین در قیر نیز باعث چسبندگی قیر می گردد.

 

کاربردهای قیر زغال سنگی


برای احیاء آهن از اکسید آهن استفاده می شود. زغال سنگ بدون حضور اکسیژن ( پیرولیز) به کک تبدیل می شود( حرارت حدود
°C 1100 است). قیر زغال سنگ که تحت این حرارت قرار گیرد به کک تبدیل می شود. در بالای برج تقطیر این گازها قطران می گردند و دوباره جداسازی روی آنها صورت می گیرد که به اینها Core CokePitch می گویند.

Pitch: به هیدروکربوری گفته می شود که بدون حضور اکسیژن تحت حرارت قرارگیرد.
در ایـن واحـد هـم کارهـای تحقیقـاتـی و هـم کارهـای پروژه ای صورت می گیرد. مثلاً مشکلات موجود در پالایشگاههای داخلی مورد بررسی قرار می گیرند.
قیرها دارای مشخصاتی هستند که به آنها
Penetration grade گفته می شود.
قیرهایی که بر اساس نفت خام مخلوط بدست می آیند دارای مشخصات ساختاری اند که براحتی نمی توان این مشخصات را پیدا کرد.
Penetration gradeخواص قیر را به خوبی نشان نمی دهد.
معمولاً قیر رابصورت امولسیون در می آورند، امولسیون به این خاطر است که قیر و آب در هم حل نمی شوند، در اینجا از
emulsifier استفاده می شود. این دستگاه از یک طرف ذرات قیر و از طرف دیگر ذرات آب را در بر می گیرد و بدینصورت قیر بصورت امولسیون در می آید.

انواع emulsifier

 

1. ionic
        2. noniomc
        3. cationic
        4. رسی

 

ترکیب شیمیایی : هر قدر که در ستون تقطیر پایین بیاییم مشخصات منحصر به یک محصول خاص دربرشها مشخص می شود. تعداد هیدروکربورهای موجود در هر برش فرق دارد و خصوصیات شیمیایی این برشها کاملاً با هم فرق دارند. اگر بنزین دارای 19 مولکول باشد، که این مولکولها همگی مختلفند، ممکنست خواص فیزیکی این مولکولها یکسان باشد ولی خواص شیمیایی اینها تفاوت دارند.

نظرات مختلف در مورد مواد تشکیل دهنده قیر:

دو نظریه در این مورد وجود دارد:
نظریه اول :
Resin و Asphaltene
نظریه دوم :
Saturate، Aromatic ، Polar Aromatic و Asphaltene

برای هرکدام از اینها یک مشخصات خاصی وجود دارد که باید در محدوده های خاص خودش از آنها استفاده نمود.
یکی دیگر از کاربردهای قیر برای پوشش لوله های فلزی گاز و نفت و ‌آب در روی زمین که مرطوب بوده و یا در زیر زمین می باشد. هر قدر نسبت
C ⁄ H بیشتر باشد قیر بهتری خواهیم داشت.

آسفالتن: مولکولی است که حجم زیادی را در بر می گیرد ومانند اسفنج متبلور است.
 
برای پمپاژ کردن قیر نیاز به محاسبات ویژه و پیچیده ریاضی داریم.
ارزیابی قیر هایی که در راه سازی مصرف میشود، سه خصوصیت دارد.(80% قیر برای راهسازی استفاده می شود).

 

1. Pain grade
        2. Viscosity grade
        3. Performance grading

 

بهترین نفت خام، نفت خام پارافینی است که برای تهیه هیدروکربورهای سبک کاربرد دارد. در آمریکا 15 پالایشگاه برای تولید قیر طراحی شده است اما در ایران متاسقانه چنین پالایشگاهی وجود ندارد.
سابقه استفاده از قیر به دروانهای قدیم بر می گردد که قیر از طریق شکستگیهای سطح زمین و درزها به سطح زمین راه پیدا می کرد. مردم از آن به عنوان 2 وسیله اصلی و عمده استفاده می کردند که عبارتند از:

 

1. چسبندگی زیاد
        2. ضد زنگ بودن

 

از بالای برج تقطیر به پایین نسبت C/H ( نسبت کربن به هیدروژن) افزایش می یابد، یعنی ترکیبات سنگین تر را خواهیم داشت. در واقع ترکیبات آروماتیک افزایش می یابد.
در قسمت
Vaccum bottom : قیرهای نفتی دارای مولکولهای خیلی زیادی هستند.
قیرهای قدیمی ایران منشاء طبیعی داشته اند و از حوالی کردستان تهیه می شده اند.

 
sajad01 بازدید : 704 دوشنبه 28 بهمن 1392 نظرات (0)

به نام خداوند جان وخرد

نویسنده : زین العابدین اسدی

کلاس01

آرسنیک چیست ؟

اطلاعات اولیه


آرسنیک ، عنصر شیمیایی است که در جدول تناوبی با علامت
As مشخص است و دارای عدد اتمی ۳۳ می‌باشد. آرسنیک ، شبه فلز سمی معروفی است که به سه شکل زرد ِ سیاه و خاکستری یافت می‌شود. آرسنیک و ترکیبات آن ، بعنوان آفت‌کش مورد استفاده قرار می‌گیرند: علف کش ، حشره کش و آلیاﮊهای مختلف.
خصوصیات قابل توجه
آرسنیک از نظر شیمیایی شبیه فسفر است، تا حدی که در واکنشهای بیوشیمیایی می‌تواند جایگزین آن شود. لذا سمی می‌باشد. وقتی به آن حرارت داده شود، بصورت اکسید آرسنیک در می‌آید (اکسیده می‌شود) که بوی آن مانند سیر است. آرسنیک و ترکیبات آن همچنین می‌توانند بر اثر حرارت به گاز تبدیل شوند. این عنصر به دو صورت جامد وجود دارد: زرد و خاکستری فلز مانند.


کاربردها


* در قرن بیستم ، آرسنِت سرب بعنوان یک آفت کش برای درختان میوه به‌خوبی مورد استفاده قرار گرفت، ( استفاده از آن در افرادِکه به این کار اشتغال داشتند، ایجاد آسیبهای عصب شناسی کرد ) و آرسنیت مس در قرن نوزدهم بعنوان عامل رنگ کننده در شیرینی‌‌ها بکار رفت.
* در سموم کشاورزی و حشره کشهای مختلف استفاده می‌شود.
* آرسنید گالیم یک نیمه رسانای مهمی است که در
IC ها بکار می‌رود. مدارهایی که از این ترکیب ساخته شده‌اند، نسبت به نوع سیلیکونی بسیار سریعتر هستند ( البته گرانتر هم می‌باشند ). آرسنید گالیم بر خلاف سیلیکون آن bandgap مستقیم است. پس می‌تواند در دیودهای لیزری و LED ها برای تبدیل مستقیم الکتریسیته به نور بکار رود.
* تری‌اکسید آرسنیک در خون شناسی برای درمان بیماران سرطان خون حاد که در برابر
ATRA درمانی مقاومت نشان می‌دهند، بکار می‌رود.
* در برنز پوش کردن و ساخت مواد آتش بازی و ترقه مورد استفاده قرار می‌گیرد.


تاریخچه


آرسنیک ( واﮊه یونانی
arsenikon به معنی اریپمنت زرد ) در دوران بسیار کهن شناخته شده است . از این عنصر به کرات برای قتل استفاده شده است. علایم مسمومیت با این عنصر تا قبل از آزمایش مارش تا حدی نا مشخص بود. “آلبرتوس مگنوس” را اولین کسی می دانند که در سال ۱۲۵۰ این عنصر را جدا کرد . “جوان شرودر” در سال ۱۶۴۹ دو روش برای تهیه آرسنیک منتشر کرد.
پیدایش
آرسوپیزیت ( سنگ آرسنیک) که میس پیکل
Mispickel هم نامیده می‌شود، سولفوری است که بر اثر حرارت ، بیشترِن مقدار آرسنیک از سولفید آهن آن جدا می‌شود. مهمترین ترکیبات آرسنیک عبارت است از: آرسنیک سفید ، سولفید آن ، گرد حشره کش ، آرسنیت کلسیم و آرسنیت سرب.
از گرد حشره کش ، آرسنیت کلسیم و آرسنیت سرب بعنوان سموم و حشره کشها در کشاورزی استفاده می‌شود .این عنصر گاها” بصورت خالص یافت می‌شود، ولی معمولا” بصورت ترکیب با نقره ، کبالت ، نیکل ، آهن ، آنتیموان یا سولفور وجود دارد.


هشدارها


آرسنیک و بسیاری از ترکیبات آن سمی هستند. آرسنیک با مختل کردن وسیع سیستم گوارشی و ایجاد شوک ، منجر به مرگ می‌شود.

 

sajad01 بازدید : 93 دوشنبه 28 بهمن 1392 نظرات (0)

به نام خداوند جان وخرد

نویسنده : زین العابدین اسدی

کلاس01

عناصر کمیاب و منابع آنها در روی زمین

 

عناصر کمیاب زمین، عنصرهای ۵۸ تا ۷۱جدول تناوبی را تشکیل میدهند و جزو عناصر واسطه داخلی می باشند. 
 
  
 
  
عناصر کمیاب زمین، عنصرهای ۵۸ تا ۷۱جدول تناوبی را تشکیل میدهند و جزو عناصر واسطه داخلی می باشند. وجه تسمیه لانتانیدها از عنصر ۵۷ جدول یعنی لانتان(
La)گرفته شده است. باید توجه داشت که خواص شیمیایی این دسته از عناصر مشابه خواص لانتان می باشد. در واقع اطلاق نام عناصر نادر یا کمیاب، از آنجائیکه این عناصر نه کمیابند و نه به آن دسته از اکسیدهای خاکی مانند(اکسیدهای)آلومینیوم، زیرکونیوم و ایتریوم تعلق دارند، غلط مصطلح است. زمانی که نخستین اعضای این گروه برای اولین بار کشف شد، بصورت اکسید مجتمع گردیده بودند و از آنجایی که این اکسیدها تا اندازهای به اکسیدهای کلسیم، منیزیم و آلومینیوم که بعدها به آنها عنوان اکسیدهای خاکی اطلاق گردید شباهت دارند، لذا این عناصر به نام عناصر کمیاب معروف گردیدند. در هر صورت باید توجه داشت که سریوم در پوسته زمین بسیار فراوان تر از سرب بوده و نیز ایتریم از قلع بسیار فراوانتر است و حتی بایداذعان نمود که کمیاب ترین خاکهای کمیاب، به استثنای پرومتیم، بسیار از عناصر گروه پلاتین فراوانترند.

 

 

مهمترین کانی های عناصر کمیاب عبارتند ازمونازیت، زنوتیم، بستناسیت. معمولااین مواد بوسیله اعمال مکانیکی مانند شناورسازی و یا استفاده از روشهای مغناطیسی تغلیظ میشوند. سپس لانتانیدها در حالتیکه بصورت کانیهای فسفات یا سیلیکات می باشند، بوسیله اسید مورد شستشو قرار می گیرند. برخی از کانیها مانندکولومبوتانتالات ها با کربن حرارت داده شده و یا تحت تاثیر کاستیک قوی قبل از سنگ شویی قرار داده میشوند.

 

 

منابع عناصر کمیاب در روی زمین :

 

 

کربناتیت ها بیشتر با سنگهای آذرین آلکالن در ریفت های داخل قاره ای وبه ندرت جزایر اقیانوسی ونقاط داغ داخل قاره گزارش شده اند . کربناتیت ها از دوره پر کامبرین تا عهد حاضر گزارش شده اند.مواد معدنی مهمی از کربناتیت ها بدست می آیند عبارت اند از نیوبیوم، آهن، آپاتیت، عناصر کمیاب، ورمیکولیت، استرانسیوم، باریم، زیرکون، اورانیوم، فلوریت و تیتان.

 

 

کربناتیت های حاوی عناصر کمیاب از نوع آهن دار هستند.این کربناتیت ها به ندرت یافت می شوند. کربناتیت های آپاتیت-مگنتیت اکثرا دارای مقدار کمی عناصر کمیاب هستند. دو کمپلکس کربناتیت کولا(Kola)در روسیه و مانت پاس(Mountain pass)در کالیفرنیا(آمریکا)ذخایر قابل توجهی از عناصر کمیاب دارند.

 

 

کانیهای مهمی که در این ذخایر یافت می شوند عبارتند:

 


پیرو کلر (Ca.Na)۲(Nb.Ta)۲O۶(O.OH.F)

 


بادالیت ZrO۲

 

باستانسیت F.OH)(Ce.La)۲CO۳)

 


مونازیت CePO۴

 


پاریزیت Ca.La)۲(CO۳)۳F۲)

 

 

حدود ۱۳۰کانی مختلف تاکنون در کربناتیت ها تشخیص داده شده است.

 

 

عناصرکمیاب می تواند از سنگهای آذرین آلکالن حاصل شود(سمینوف وهمکاران ۱۹۷۲).عناصر کمیاب اکثرا در سنگهای آلکالن غنی از سدیم-پتاسیم اسیدی یافت می شود. نفلین سیانیت ها حاوی عناصر کمیاب می باشند.

 

 

پگماتیت هایی که در عمق۵/ ۳تا ۷ کیلومتری(عمق متوسط)از سطح زمین تشکیل شده اند به پگماتیت های حاوی عناصر کمیاب معروفند.بیشتر کانی های حاوی عناصر کمیاب به صورت پلاسر یافت می شوند.

 

 

کانی های زیر حاوی عناصر کمیاب می باشند :

 

 

مونازیت Ce,La,Nd,Th)PO۴)

 


زینوتیم YPO۴

 


آلانیت (Ce,Ca,Y)۲(Al+۳,Fe+۳)۳O(SiO۴)(Si۲O۷)(OH)

 


سریوپیرو کلر (Ce,Ca,Y)۲(Nb,Ta)۲O۶(OH,F)

 

 

ایتروپیرو کلر Y,Na,Ca,Y)۱-۲(Nb,Ta,Ti)۲(O.OH)۷)

 

 

لوپاریت Ca,Na,Ce)(Ti,Nb)O۸)

 


گادولینیت Gadolinite)۲BeO.FeO.Y۲O۳.۲SiO۲)

 


بستنا سیت Bastanasite)CeFCO۳)

 

 

سامارسکیت Samarskite)(Ca,Fe,UO۲)۳O.Y۲O۳.۳(Nb,Ta)۲O۵)

 

 

فرگوزنیت fergusonite)Y۲O۳.۳(Nb.Ta)۲O۵)

 

 

اگزنیت Euxenite)Y۲(NbO۳)۳.Y۲(TiO۳)۳.۱ ۱/۲H۲O)

 

 

ایتروفلوئوریت Yttrofluorite)۲YF۳۳CaF۳)



زینوتیم( YPO۴):

 

 

زینوتیم یکی از کانی های کمیاب ایتریوم می باشد . Wakefielditeو chernovite-(Y)دیگر کانی های ایتریوم هستند هرچند به ترتیب وانادات وارسنات می باشند. اغلب اوقات اورانیوم وبرخی از عناصر کمیاب مانند ایربیوم، تریوم، ایتریوم، زیرکونیوم در این کانی یافت می شود. زینوتیم به مقدار کم رادیواکتیویته می باشد

 

 

گادولینیت(Gadolinite):

 

 

فرمول شیمیایی ۲BeO.FeO.Y۲O۳.۲SiO۲

 

 

نام دیگر آن Yttrium Iron Beryllium Silicateاست. این کانی تاحدی کانی کمیاب است . شکل آن منشوری، مقطع عرضی بلورها به شکل الماس، ومعمولابه رنگ سبز وبادرخشندگی زیبا می باشد. این کانی حاوی دو عنصر ایتریوم(yttrium)وبریلیوم(beryllium)می باشد.اتریوم(yttrium)یک فلز کمیاب زمین است ودر صنعت مورد استفاده قرار می گیرد

 


سامارسکیت(Samarskite):

 

 

نام دقیق آن smarskite-yاست این کانی در گرانیت پگماتیت ها در سنگهای آذرین درونی که آرام سردشده اند یافت می شود.سامارسکیت همراه کوارتز، فلدسپات، کلومبیت، تانتالیت، وبرخی ازعناصر کمیاب می باشد. رنگ آن مشکی مخملی تا قهوه ای تیره است.وکریستال های آن مات و رادیواکتیویته می باشدواغلب با لیمونیت(Limonit)پوشیده شده است.درکوهای ارال در روسیه، نروژ،سوئد، برزیل، امریکا یافت می شود

 

 

ایتروفلوئوریت(Yttrofluorite):

 

 

این کانی حاوی فلرورید ومقدار قابل محسوس ایتریوم(Ytrium )می باشدویون های(Ca)در ساختار های فلورید جایگزین شده اند . این کانی در روسیه، امریکا، نروژ، ژاپن، مغولستان یافت می شود.

 

sajad01 بازدید : 306 دوشنبه 28 بهمن 1392 نظرات (0)

محمد شیرین پور

کلاس01

فرآیندهای ترمودینامیکی

 

یک حالت تعادل با مقادیر پارامترهای ماکروسکوپیک T ، V ، P مشخص می شود. مقادیر ماکروسکوپیک و روشهای اندازه گیری P و V نیاز به توضیحات اضافی ندارند.
 
 
 
مقدمه

 


یک حالت تعادل با مقادیر پارامترهای ماکروسکوپیک
T ، V ، P مشخص می شود. مقادیر ماکروسکوپیک و روشهای اندازه گیری P و V نیاز به توضیحات اضافی ندارند.



یک گاز ایده آل می تواند به صورت گازی که از قانون بویل _ ماریوت بر طبق قاعده زیر تبعیت می کند، تعریف شود:

 

 

برای یک گاز با جرم ثابت ، فشار حاصل شده توسط حجم فقط بستگی به درجه حرارت دارد. می دانیم که درجه حرارت ثابت همان دمای ثابت است. بنابراین منظور ما با بیان درستی قانون بویل _ ماریوت برای تمامی دماهای ممکنه ، کاملا واضح است. در حالیکه خود دما هنوز تعیین نشده است. در نتیجه ما می توانیم قبل از تعریف نحوه اندازه گیری درجه حرارت ، ایده آل بودن یک گاز را بررسی کنیم.

 

 

اگر ایده آل بودن گاز مشخص شود، ما می توانیم بستگی دمایی ،PV را از فرمول مسلم فرض کنیم. بعد از این ، گاز ایده آل به عنوان جسم دماسنجی بکار برده می شود، در حالیکه درجه حرارت بر طبق رابطه قبل با در نظر گرفتن P به عنوان ویژگی دماسنجی مشخص می شود. این ویژگی که به این صورت تعریف می شود، درجه حرارت نامیده می شود و در ادامه به عنوان T معین می شود.



بنابراین می توان فرض کرد که سومین پارامتر ماکروسکوپیک T که یک حالت تعادل سیستم را مشخص می کند، تعریف شده است. ما یک فرآیند را تحول یا انتقال از یک حالت تعادل به حالت تعادل دیگر می نامیم. یعنی انتقال از برخی مقادیر ، ، مربوط به پارامترها ، به مقادیر دیگر ، ، . در این تعریف ضروری است که حالتهای اولیه و نهایی ، حالتهای تعادل باشند.

 

 

انواع فرآیندها

 


۱) فرآیند ناترازمندی یا عدم تعادل

 


۲) فرآیند تعادلی

 


۳) فرآیند برگشت پذیر

 


۴) فرآیند برگشت ناپذیر

 


الف) فرآیندهای ناترازمندی یا عدم تعادل

 


فرض کنید برای مثال باید به یک حالتی با حجم متفاوت برسیم. واضح است که اگر تحول به آرامی انجام نشود، فشار به همراه دما برای مدت زیادی در این حجم ثابت نخواهد ماند. در حالت کلی ، صحبت درباره هر فشار و دمای معینی بی معنی خواهد بود، چون آنها در نقاط مختلف ، متفاوت خواهد بود. به علاوه ، توزیع فشار و دما در یک حجم فقط به حالتهایی اولیه و نهایی بستگی ندارد، بلکه به نحوه انجام این تحول نیز وابسته است. بنابراین حالتهای میانی در یک چنین فرایندی ، ناترازمند هستند. این فرآیند ، فرآیند ناترازمندی (فرآیند عدم تعادل) نامیده می شود.

 


ب) فرآیند تعادلی

 

 

یک تحول می تواند به طرق مختلفی تکامل یابد. یعنی بی نهایت آرام صورت گیرد. بعد از یک تغییر بسیار کوچک در پارامترها ، تغییر بعدی تا رسیدن سیستم به حالت تعادل صورت نمی گیرد، یعنی تمام پارامترها در سراسر سیستم ، با مقادیر ثابت فرض می شوند. بعد از آن مرحله بعدی صورت می گیرد و به همین ترتیب ادامه می یابد. بنابراین ، تمامی فرآیند شامل حالتهای تعادلی متوالی است. چنین فرایندی، فرآیند تعادلی نامیده می شود. در معادله حالت یک گاز ایده آل ، ، دو تا از پارامترها (هر کدام) می توانند به عنوان پارامترهای مستقل در نظر گرفته شوند و مشخص کننده فرآیند باشند. یک نمونه از این فرآیند در انتقال از حالت و به حالت و در نظر گرفته می شود. در هر نقطه از این فرآیند ، دما منحصرا از معادله حالت بدست می آید.

 


ج) فرآیندهای برگشت پذیر و برگشت ناپذیر

 


فرآیندی که در تحول برگشت از حالت نهایی به حالت اولیه توسط حالت میانی ، نظیر فرآیند جلو برنده ، انجام گیرد، فرآیند بازگشت پذیر نامیده می شود.

 


اگر فرآیند برگشت ، بوسیله همان حالت میانی غیر ممکن باشد، فرآیند بازگشت ناپذیر است.

 


واضح است که یک فرایند غیر تعادلی (ناتراز مندی) در حالت کلی نمی تواند برگشت پذیر باشد. از طرف دیگر ، یک فرآیند تعادلی همواره برگشت پذیر است. البته این به آن معنا نیست که مفهوم فرآیند برگشت پذیر ، معادل یک فرآیند بسیار آرام (کند) باشد. برخی فرآیندهای بی نهایت آرام غیر قابل برگشت (برگشت ناپذیر) هستند. برای مثال تغییر شکل مومسان (پلاستیکی) جامدات ممکن است به صورت بی نهایت آرام صورت گیرد، ولی با وجود این یک فرآیند برگشت ناپذیر است.

 

 

بنابراین از این پس فقط فرآیندهای برگشت پذیر را در نظر خواهیم گرفت. به مثالی در مورد انبساط همدما (تک دما) در یک گاز توجه کنید. گازی با حجم اولیه در ظرفی که با پیستونی مسدود شده است، قرار دارد. برای کنترل فشار پیستون روی آن دانه های شن و ماسه ریخته شده است. بعد از اینکه حجم گاز از به V افزایش یافت. انتقال بعدی دانه های شن و ماسه از روی پیستون متوقف می شود. گاز مراحل متوالی را طی کرده است که در هر کدام از مراحل مقادیر حجم و فشار معین بود، در حالی که درجه حرارت ثابت می ماند. کار انجام گرفته توسط گاز برابر بیرون راندن هوای اتمسفری از حجمی است که اکنون توسط گاز در داخل سیلندر اشغال شده است و پیستون به همراه شن تا ارتفاع مشخصی بالا برده شده است. دانه های شن که به منظور بالا بردن پیستون تا ارتفاعهای مختلف در آنجا قرار داده شده اند، برداشته می شوند.

 

 

حال بیایید به تدریج پیستون را با دانه های شن پر کنیم که قبلا به منظور بالا بردن پیستون برداشته شده بودند و آن را به ارتفاع اولیه برسانیم. این دانه های شن ، جرم پیستون را افزایش می دهند. در نتیجه ، فشار گاز افزایش می یابد و با شروع فشرده شدن ، حجم آن کاهش می یابد. کل فرآیند در جهت معکوس انجام می گیرد و دما به علت مبادله گرما با محیط پیرامون در یک مقدار ثابت باقی می ماند. فشار گاز مربوط به هر کدام از وضعیتهای سیلندر نظیر فرآیند انبساط گاز است. در نتیجه ، با کاهش حجم ، گاز موجود در سیلندر تمامی حالتهای فرآیند انبساط را طی می کند. ولی این بار نظم (ترتیب) در جهت عکس است.

 

 

وقتی که گاز تا حجم فشرده می شود، پیستون همه دانه های شن را که قبلا برداشته شده بود، حمل می کند. حال جرم پیستون به همراه شن برابر است. بنابراین کل سیستم به حالت اولیه برگشته است. انبساط و فشرده شدن (انقباض) گاز به صورت معکوش صورت می گیرد.

 

 

همچنین گاز می تواند به صورت بازگشت ناپذیر انبساط یابد، برای مثال با برداشتن سریع تمامی دانه های شن از روی پیستون ، وقتی که پیستون در پایین ترین موقعیت است. در این صورت جرم پیستون بدون شن به اندازه کافی سبک خواهد بود. تحت این شرایط ، پیستون با شتاب زیادی به سمت بالا حرکت خواهد کرد و در نتیجه حجم گاز افزایش خواهد یافت. در این حالت درجه حرارت تغییر می کند و در قسمتهای مختلف حجم سیلندر مقادیر متفاوتی را خواهد داشت و فقط حجم گاز مقدار معینی را دارا خواهد بود. حالت گاز موجود در سیلندر با هیچ یک از مقادیر P و V قابل توصیف نیست. بدین علت فرآیند نمی تواند با یک خط پیوسته نظیر فرآیندهای برگشت پذیر نمایش داده شود.

 

 

نکته ۱

 


تمامی حالتهای میانی در یک فرآیند تعادلی ، حالتهای متعادل هستند. در حالیکه حالتهای میانی در یک فرآیند ناترازمند ، شامل حالتهای ناترازمندی هستند.

 


فرآیندهای تعادلی برگشت پذیر هستند، در حالیکه فرآیندهای ناترازمندی ، برگشت ناپذیر هستند.

 

 

یک فرایند بی نهایت آرام (کند) لزوما یک فرآیند تعادلی و برگشت پذیر نیست.

 

نکته ۲

 

 

تغییر حالت در یک سیستم همواره با یک تحول به حالت غیر تعادلی یادآوری می شود. هر چه تغییر در سیستم سریع تر صورت گیرد، اهمیت انحراف از حالت غیر تعادلی بیشتر می شود. برای برگشت به حالت تعادل مقدار زمان زیادی لازم است. از این رو با تغییر حالت سیستم به صورت بسیار آرام ، ما سیستم را از حالت تعادل خارج نخواهیم کرد و از طرف دیگر ، با زمان دهی کافی به سیستم برای برگشت به حالت تعادل در هر مرحله میانی ، سیستم از حالت تعادل خارج نخواهد شد. در نتیجه سیستم حالتهای تعادلی متوالی را طی خواهد کرد.



تقریبی در نظر گرفتن این اظهارات و فرض کردن این که سیستم فقط یک رشته حالتهای نزدیک تعادلی و نه خود تعادلی را طی می کند، کاملا اشتباه است و در واقع خود حالت تعادل توسط افت و خیزهایی بوسیله حالتهای غیر تعادلی بدست می آید. بنابراین اگر حالتهای نزدیک تعادل با حالتهای تعادلی بوسیله مقدار کوچکی نسبت به حالتهای افت و خیز تفاوت داشته باشد، آنها به سادگی می توانند به عنوان حالتهای تعادلی در نظر گرفته شوند. این مطلب همواره می تواند حاصل شود، به شرطی که فرآیند به اندازه کافی آرام انجام گیرد.

 

sajad01 بازدید : 103 دوشنبه 28 بهمن 1392 نظرات (0)

آرش عباسی

کلاس01

تجزیه عنصری

 

در شناسایی ترکیبات آلی شیمیدان کمتر به یک جسم خالص برخورد می کند بلکه اکثرا جسم با محصولات فرعی و مواد اولیه مخلوط است.گرچه با وجود روش های جدید تفکیک بخصوص روشهای کروماتوگرافی جدا کردن ترکیب خالص از گذشته آسانتر است با این حال نباید اهمیت روشهای کلاسیک را نادیده گرفت. 
 
 
 
مقدمه

 

تفکیک مخلوط تر کیبات آلی:

 



در شناسایی ترکیبات آلی شیمیدان کمتر به یک جسم خالص برخورد می کند بلکه اکثرا جسم با محصولات فرعی و مواد اولیه مخلوط است.گرچه با وجود روش های جدید تفکیک بخصوص روشهای کروماتوگرافی جدا کردن ترکیب خالص از گذشته آسانتر است با این حال نباید اهمیت روشهای کلاسیک را نادیده گرفت.

 

 


اساس کلی روشهای که اغلب برای جدا کردن مخلوط های آلی به کارمی رود استفاده از قطبیتی است که در اجزای یک مخلوط وجود دارد یا در آن ایجاد می شود.این اختلاف تقریبا در تمام روشهای تفکیک از جمله تقطیر -تبلور مجدد-استخراج و کروماتوگرافی به کار می آید.بزرگترین قطبیتی که تفکیک را ساده تر می کند اختلافی است که در قطیبت نمکها و مواد آلی غیر قطبی وجود دارد.هر گاه یک یا چند جزاز یک مخلوط قابل تفکیک به نمکهای مربوط باشند به سهولت می توان آن اجزا را به کمک استخراج یا تقطیر به طور کامل از اجزای غیر قطبی جدا کرد.

 

 

تجزیه کیفی آلی به روش کلاسیک:

 

 

این تجزیه شامل ۶ مرحله ی اساسی است که در زیر آرده شده است:

 

 

۱) آزمایش مقدماتی خواص فیزیکی و شیمیایی

 

 

۲) اندازه گیری ثابت های فیزیکی

 

 

۳) تجزیه عنصری

 

 

۴) آزمایشهای مربوط به حلالیت

 

 


۵) آزمایشهای مربوط به گروه بندی(فعالیت عوامل مختلف غیر از واکنشهای اسیدو باز)

 

 

۶) تهیه مشتق ها

 

 


این روش بسیار با ارزش است.با این روش معمولا می توان یک ترکیب آلی شناخته شده را نسبت به یک ترکیب معدنی با اطمینان بیشتری تشخیص داد.

 

 


در ادامه به شرح مورد سوم(تجزیه عنصری) می پردازیم.

 

 

sajad01 بازدید : 108 شنبه 26 بهمن 1392 نظرات (0)

به نام یزدان پاک

نویسنده:محمد شیرین پور

کلاس:01

فهرستی از ۲۰ حلال مختلف ، کاربرد و اثرات آن

حلال جزء مهمی از محلول است. 
 
حلال جزء مهمی از محلول است. حلال ها مواد شیمیایی هستند که مواد دیگر را در خود حل می کنند. حلال ها به طور کلی به دو دسته حلال های قطبی و حلال های غیر قطبی تقسیم می شوند. در حلال قطبی، ذرات تشکیل دهنده حلال قطبی بوده و یکدیگر را با نیروی جاذبه ی الکتروستاتیکی جذب می نمایند.

مهمترین حلال قطبی آب می باشد. انواع اسیدها مانند سولفوریک اسید H۲SO۴ و هیدروزن فلوئورید HF ، نیز در این دسته قرار می گیرند.

در حلال های غیر قطبی ، ذرات حلال غیرقطبی بوده و بنابراین تنها نیروی جاذبه ی ضعیف واندروالسی بین ذرات وجود دارد، به همین دلیل این حلال ها اغلب، دارای نقطه ی جوش بسیار پایین بوده و فرار هستند.

sajad01 بازدید : 1216 شنبه 26 بهمن 1392 نظرات (0)

به نام یزدان پاک

نویسنده:محمد شیرین پور

کلاس:01

اسیدها

 
 اسیدها موادی ترش مزه اند خاصیت خورندگی دارند شناساگرها را تغییر رنگ می دهند و بازها را خنثی می کنند.  
 
تعریف قدیمی

اسیدها موادی ترش مزه اند خاصیت خورندگی دارند شناساگرها را تغییر رنگ می دهند و بازها را خنثی می کنند.

بازها موادی با مزهٔ گس-تلخ اند حالتی لزج دارند شناساگرها را تغییر رنگ می دهند و اسیدها را خنثی می کنند.

لی بیگ: اسیدها موادی اند که در ساختار خود هیدروژن یا هیدروژن هایی دارند که در واکنش با فلزها توسط یون های فلز جایگزین می شوند.

آرنیوس: اسیدها موادی هستند که ضمن حل شدن در آب یون +H آزاد می کنند. بازها موادی هستند که ضمن حل شدن در آب یون -OH آزاد می کنند.این تعریف فقط به موادی محدود می‌شود که در آب قابل حل باشند. حدود سال ۱۸۰۰، شیمی دانان فرانسوی از جمله آنتوان لاووازیه، تصور می کرد که تمام اسیدها دارای اکسیژن هستند. شیمی دانان انگلیسی از جمله سر همفری دیوی، معتقد بود که تمام اسیدها دارای هیدروژن هستند. شیمی دان سوئدی، سوانت آرنیوس، از این عقیده برای گسترش تعریف اسید استفاده نمود.

لوری-برونستد: اسید گونه ای است که در واکنش شیمیایی پروتون (یون+H)می دهد و باز گونه ای است که در واکنش شیمیایی پروتون (یون+H)می پذیرد. لوری و برونستد این تعریف را بیان کردند، که از آن بر خلاف تعریف آرنیوس می‌توان در محیط غیر آبی هم استفاده کرد.

sajad01 بازدید : 706 شنبه 26 بهمن 1392 نظرات (0)

به نام یزدان پاک

نویسنده:آرش عباسی

کلاس:01

بررسی عملکرد جذب گاز دی اکسید گوگرد در برج جذب سینی دار

کنترل و استفاده صحیح از محیط طبیعی، از پیچیده ترین مشکلاتی است که صنعت در سال های اخیر با آن مواجه شده است.  
 
کنترل و استفاده صحیح از محیط طبیعی، از پیچیده ترین مشکلاتی است که صنعت در سال های اخیر با آن مواجه شده است. یکی از مهمترین آلودگی ها که توسط صنایع شیمیایی و اتومبیل ها در هوا منتشر می شود، گاز دی اکسید گوگرد است که عامل اصلی پدید آمدن باران های اسیدی است. در سال های اخیر در جامعه ما نیز توجه زیادی به محیط زیست شده و اصطلاحاتی مانند اکولوژی، محیط زیست، مه دود فتوشیمیایی، اثرات گلخانه ای در مباحث شنیده می شود.

در این تحقیق عملکرد یک برج جذب بدون ناودان به کمک یک نمونه نیمه صنعتی بررسی شده است. نمونه اصلی این برج با سه سینی، هر کدام به مساحت۱۹m۳ برای تصفیه جریان ۱۱۰۰۰m۳/hr هوای آلوده ساخته شده است. جریان مایع که این تصفیه را انجام می دهد با شدت ۴۰m۳/hr در برج جریان دارد. نمونه نیمه صنعتی ساخته شده برمبنای برج اصلی دارای سه سینی و با سطح مقطع ۰/۲۸m۲ است. تعداد سوراخ های هر سینی برج۸۰۰ عدد، قطر سوراخ ها ۶mm با آرایش مثلثی و ضخامت سینی ها ۶mm است. در این برج جذب همانند نمونه اصلی از محلول آبی کربنات سدیم به منظور جذب گاز دی اکسید گوگرد از هوا به عنوان گاز حامل، استفاده شده است.

پژوهش های مشابهی در این زمینه انجام شده است و چون این بررسی ها بر روی مدل های نیمه صنعتی یک واحد عظیم صنعتی و یا یک سیستم جذب جدید انجام می شود، اهمیت زیادی دارند. Cutierrez و همکارانش در سال۲۰۰۱ تاثیر پارامترهای مختلف از جمله غلظت و شدت جریان گاز ورودی و میزان غبار موجود در گاز را بر روی عملکرد یک سیستم جذب گاز دی اکسید گوگرد خشک در یک بستر سیال، بررسی کردند. این آزمایش ها بر روی یک نمونه نیمه صنعتی در یک نیروگاه با حداکثر غلظت گاز اسیدی ۲۰۰۰ppm انجام شده و در نهایت یک مدل ساده برای تعریف سیستم تبیین شده است.

Meikap و همکارانش در سال۲۰۰۱ به مدل سازی و انجام آزمایش های تجربی روی یک ستون چند مرحله ایMSBCS (Mulit-Stage Bubble Scruber) پرداخته اند. مدل و آزمایش های آنها نشان داده است که این سیستم تنها به کمک آب قادر است به بازدهی حدود۱۰۰ درصد دست یابد. در سال۲۰۰۳، Gerbec و همکارانش به منظور بررسی پدیده های فیزیکی و شیمیایی که در طول فرآیند جذب اتفاق می افتد یک مدل ارایه کردند. در این مدل روابط تعادلی مربوط به انواع محلول هایی که به صورت جاذب گاز دی اکسید گوگرد به کار می رود، در نظر گرفته شده است و اطلاعات مربوط به سیستم، به عنوان ورودی به مدل داده می شود. این مدل اساساً بر مبنای یک نمونه نیمه صنعتی طرح ریزی شده است و می توان از آن به منظور طراحی و بهینه سازی سیستم های مشابه استفاده کرد.

Zheng در سال۲۰۰۳ بر روی نمونه ای نیمه صنعتی که براساس راکتورهای جذب گاز دی اکسید گوگرد ساخته شده یک سری آزمایش انجام داده است. در این آزمایش ها pH محلول قلیایی، غلظت گاز دی اکسید گوگرد ورودی، دمای راکتور، غلظت Cr در محلول قلیایی به عنوان متغیر و بازدهی سیستم، غلظت محلول قلیایی باقی مانده و مقدار مواد جامد موجود در آن به عنوان پارامترهای اندازه گیری شده مدنظر قرار گرفته اند.

در سال۲۰۰۰ نیز Chain و Chu به بررسی جذب گاز دی اکسید گوگرد و مونواکسید نیتروژن به صورت منفرد و مخلوط با یکدیگر پرداخته اند. آنها غلظت هر یک از گازها و نسبت L/G و pH اولیه محلول جاذب را به عنوان متغیرهایی در آزمایشات انجام شده در یک ستون جذب سینی دار در نظر گرفته و بازدهی سیستم را بدست آورده اند. نتایج کار آنها نشان می دهد که نسبت L/G مؤثرترین پارامتر در بازدهی یک برج جذب است. لازم به ذکر است کار این افراد در مقیاس آزمایشگاهی صورت گرفته است.

 

دستگاه ها و مواد مورد استفاده

به منظور محاسبه بازدهی برج لازم است پارامترهای مختلفی اندازه گیری شود. برای اندازه گیری غلظت گاز دی اکسید گوگرد در جریان هوای ورودی و خروجی برج از دستگاه NOVA analytical system مدل ۶۱۳۶۷۸TK به همراه یک کولر قبل از آنالایزر که مانع ورود بخار آب می شود، استفاده شد. اندازه گیری افت فشار توسط دستگاه APM ۵۰K انجام شد و سرعت جریان گاز توسط یک فلومتر پروانه ای LCA۳۰VA ساخت شرکت AirFlow انجام شد. در انجام آزمایش ها از یک نمونه کربنات سدیم صنعتی به عنوان جاذب گاز دی اکسید گوگرد استفاده شد. مطابق استاندارد ASTM E۳۵۹-۰۰ درجه خلوص آن۹۳ درصد جرمی بود و گاز دی اکسید گوگرد مورد استفاده در این آزمایش ها با خلوص۹۹/۹ درصد از یک کپسول تامین شد.

 

سیستم پایلوت

به منظور انجام آزمایش ها از مجموعه ای نیمه صنعتی استفاده شده است.

روش انجام آزمایش: مطابق استاندارد ASME PIC ۴۰-۱۹۹۱ که هدف آن بررسی و گزارش عملکرد یک سیستم عاری سازی دی اکسید گوگرد است، جهت بررسی عملکرد این برج لازم است درصد حذف دی اکسید گوگرد، نسبت ماده شیمیایی محلول جاذب که به صورت نسبت مول های قلیایی افزوده شده به مول های گاز دی اسید گوگرد ورودی تعریف می شود، میزان مصرف انرژی، شدت جریان گاز آلوده و شدت جریان مایع تصفیه کننده، در نظر گرفته عملکرد هیدرولیکی سینی ها: از جمله عوامل مهم در بهینه سازی یک سیستم جذب، مقدار انرژی مصرف شده در آن است. پارامتری را که می توان به عنوان معرف مصرف انرژی در سیستم حاضر در نظر گرفت افت فشار گاز درون برج می باشد. هدف از انجام این آزمایش ها رسم منحنی هایی است که در شدت جریان های متفاوت مایع، نحوه تغییر افت فشار گاز روی هر یک از سینی ها و کل برج با شدت جریان گاز را نشان دهد تا در ادامه بتوان نحوه مصرف انرژی در سیستم را مورد بررسی قرار داد.

بررسی اثر عوامل مختلف روی بازدهی جذب: در این بخش از آزمایش ها هدف بررسی تاثیر پارامترهای مختلف چون غلظت محلول قلیایی، غلظت گاز وروی، شدت جریان گاز، شدت جریان مایع بر عملکرد برج در جذب گاز دی اکسید گوگرد همراه هوا بود. آزمایش ها در سه غلظت متفاوت۰/۱، ۱ و۳ درصد وزنی محلول کربنات سدیم انجام شد.

روش انجام کار به این ترتیب بود که ابتدا محلول ساخته شده با غلظت مناسب به حجم۱۰۰lit تهیه و در مخزن برج ریخته می شد. فن و پمپ دستگاه روشن شده و شدت جریان های مایع و گاز روی مقادیر مناسب هر آزمایش تنظیم می شد. پس از تامین زمان مناسب برای رسیدن به شرایط پایا، افت فشار برج و شدت جریان گاز اندازه گیری و ثبت می گردید. در این حالت شیر ورودی گاز دی اکسید گوگرد باز شده، تا گاز، وارد هوای ورودی به برج شود و شدت عبور آن چنان تنظیم شد که آنالایزر در ورودی برج مقدار در نظر گرفته شده برای هر آزمایش را نشان دهد. در ادامه مقدار دی اکسید گوگرد در جریان خروجی ثبت و پس این مرحله دی اکسید گوگرد در جریان خروجی ثبت و پس از این مرحله جریان گاز قطع شده و شرایط دستگاه برای آزمایش بعدی آماده شد.

نتایج آزمایش هاعملکرد هیدرولیکی سینی ها: مربوط به شرایطی است که برج به صورت خشک کار می کند. نحوه تغییرات افت فشار در سینی اول، دوم و سوم و همچنین کل برج برحسب سرعت عبور گاز از برج است و زمانی که مایع، روی سینی ها حضور دارد، در شدت جریان های کم گاز، هر سه سینی تقریباً افت فشار یکسانی دارند، ولی به تدریج با افزایش شدت جریان گاز مشاهده می شود که افت فشار در سینی اول کمتر از افت فشار سینی سوم است. افت فشار بیشتر در سینی های دوم و سوم در شدت جریان های بالاتر گاز می تواند ناشی از کاهش فشار در بالای برج نسبت به پایین برج و افزایش نسبی حجم هوای عبوری از برج باشد. این امر سبب افزایش سرعت گاز در سینی های بالایی و افزایش نگه داشت و تجمع مایع بر روی آنها در مقایسه با سینی های پایین تر می شود. در حین انجام آزمایش نیز زیاد بودن نسبی تجمع مایع بر روی سینی های بالا در مقایسه با سینی های پایین، کاملاً مشهود است.

بررسی اثر عوامل مختلف بر بازدهی جذب: تغییرات بازدهی جداسازی برای محلول های۰/۱، ۱، ۳ درصد کربنات سدیم با تغییر در شدت جریان گاز را نشان می دهد. میزان جداسازی در شدت جریان های بالای مایع بیشتر است و نیز بازدهی جداسازی با افزایش شدت جریان گاز افزایش پیدا می کند.

 

sajad01 بازدید : 303 شنبه 26 بهمن 1392 نظرات (0)

به نام یزدان پاک

نویسنده:آرش عباسی

کلاس:01

روشنایی نواحی مرده با باتری‌های میکروبی

مهندسان دانشگاه استنفورد شیوه جدیدی را برای تولید الکتریسیته از فاضلاب با استفاده از "میکروب‌های سیمی" طبیعی به عنوان مینی‌نیروگاه‌های برق ابداع کرده‌اند که از فضولات حیوانی، برق تولید می‌کند.

دانشمندان این ابداع را «باتری میکروبی» نامیده‌اند و امیدوارند روزی برای شکستن آلاینده‌های آلی در "نواحی مرده" اقیانوس‌ها و آب‌های ساحلی از آن استفاده کنند.
در این نقاط روان‌آب کودهای شیمیایی و دیگر اتلافات آلی می‌توانند سطوح اکسیژن را تخلیه کرده و آبزیان را خفه کنند.
در حال حاضر، نمونه اولیه آزمایشگاهی محققان به اندازه یک باتری سلولی D است و مانند یک آزمایشگاه شیمی به نظر می‌رسد که دارای دو الکترود، یکی مثبت و دیگری منفی، بوده و به درون بطری از فاضلاب فرود برده می‌شود.
در درون این شیشه تیره، که به الکترود منفی متصل است، نوعی باکتری غیرمعمول از ذرات اتلافی ارگانیک تغذیه کرده و الکتریسیته‌ای تولید می‌کند که توسط الکترود مثبت باتری گیر می‌افتد.
دانشمندان مدت‌های مدیدی از وجود آنچه آن‌ها میکروب‌های exoelectrogenic می‌خوانند، آگاه بوده‌اند.
این میکروب‌ها ارگانیسم‌هایی هستند که در محیط‌های بی‌هوا تکامل یافتند و توانایی ‌نشان‌دادن واکنش به مواد معدنی اکسیدی و نه تنفس اکسیژن، را برای تبدیل مواد و غذای ارگانیک به سوخت زیستی را توسعه دادند.
طی یک دهه گذشته، چندین گروه تحقیقاتی راه‌های مختلفی را برای استفاده از این میکروب‌ها به عنوان مولدهای زیستی آزموده‌اند اما استفاده کارآمد از این انرژی چالش‌برانگیز بوده است.
آنچه در خصوص باتری میکروبی جدید است، طراحی کارآمد‌ی است که این باکتری‌های exoelectrogeni را فعال می‌کند.
در الکترود منفی باتری، کلونی‌های میکروب‌های سیمی به رشته‌های کربنی که به عنوان رساناهای الکتریکی کارآمد عمل می‌کنند، می‌چسبند.
با استفاده از میکروسکوپ الکترونی اسکن‌کننده، تیم دانشگاه استنفورد تصاویری از این میکروب‌ها را در حال اتصال پیچک‌های شیری به رشته‌های کربن گرفتند.
آن‌ها مشاهده کردند که میکروب‌ها این نانوسیم‌ها را برای تخلیه الکترون‌های اضافی‌شان به کار می‌برند.
حدود 100 عدد از این میکروب‌ها در کنار هم به اندازه عرض یک تار موی انسان هستند.
هنگامی که این میکروب‌ها ماده ارگانیک را می‌بلعند و آن را به سوخت بیولوژیکی تبدیل می‌کنند، الکترون‌های مازادشان به درون رشته‌های کربن و در عرض الکترود مثبت جاری می‌شوند.
این الکترود از اکسید نقره ساخته شده و ماده‌ای است که الکترون‌ها را جذب می‌کند.
الکترون‌هایی که به نود مثبت جاری می‌شوند، به تدریج اکسید نقره را به نقره کاهش داده و الکترون‌های اضافی را در این فرایند ذخیره می‌کنند.
پس از یک روز، الکترود مثبت بار کاملی از الکترودها را جذب کرده و تا حد زیادی به نقره تبدیل می‌شود.
در این نقطه، این الکترود از باتری حذف و دوباره به اکسید نقره بازاکسید می‌شود و الکترون‌های ذخیره‌شده را آزاد می‌کند.
مهندسان دانشگاه استنفورد تخمین می‌زنند که باتری میکروبی می‌تواند حدود 30 درصد از انرژی بالقوه قفل‌شده در فاضلاب را استخراج کند.
این روند تقریبا همان کارایی است که به آن سلول‌های خورشیدی دارای بهترین دسترسی تجاری نور خورشید را به الکتریسیته تبدیل می‌کنند.
مهندسان مدعی‌اند بزرگ‌ترین چالش آن‌ها یافتن ماده ارزان اما کارآمد برای نود مثبت است.
آن‌ها آزمایش خود را با اکسید نقره انجام دادند اما نقره برای استفاده در مقیاس بزرگ بیش از اندازه گران است و یافتن جایگزینی برای آن نیز به زمان نیاز دارد.
جزئیات این موفقیت در مجله Proceedings of the National Academy of Sciences منتشر شد.

 

 

mohamad بازدید : 260 پنجشنبه 24 بهمن 1392 نظرات (0)

به نام خدا                                     مهدی محمدیاری ملاصدرا 06      اقای سلامی                             شیمی سبز

 شيمي نقش بنيادي در پيشرفت تمدن آدمي داشته و جايگاه آن در اقتصاد ، سياست و زندگي روز به روز پر رنگ تر شده است . با اين همه ، شيمي طي روند پيشرفت خود ، كه همواره با سود رساندن به همراه بود ، آسيب هاي چشم گيري نيز به سلامت آدمي و محيط زيست وارد كرده است شيميدانها سالها كوشش و پژوهش ، مواد خاصي از طبيعت برداشت كرده اند .كه با سلامت آدمي و شرايط محيط زيست سازگاري سيار دارند ، و آنها را به مواردي تبديل كرده اند كه سلامت آدمي و محيط زيست را به چالش كشيده اند . همچنين ف اين مواد به سادگي به چرخه ي طبيعي مواد باز نمي گردند و سالهاي زيادي بصورت زباله هاي بسيار آسيب رسان و هميشگي در طبيعت مي ماند .

بارها از آسيب هاي مواد شيميايي به بدن آدمي و محيط زيست شنيده و خئانده ايم . اما چاره ي كار چيست ؟ آيا دوري و پرهيز از بهره گيري از مواد شيميايي مي تواند به ما كمك كند ، تا چه اندازه اي مي توانيم از آنها دوري كنيم ؟ كدام ها را مي توانيم بكار نبريم ؟ كداميك از فراورده هاي شيميايي را مي توان يافت كه با آسيب به سلامت آدمي يا محيط زيست همراه نباشد ؟ داروهايي كه سلامتي ما به آنها بستگي زياد‌‌‌ي را به خود ما آسيب هايي به بدن ما همراهند .. آيا مي توانيم آنها را بكار نبريم ؟ آيا مي توان آب تصفيه شده با مواد شيميايي را  ننوشيم ؟ پيرامون ما را انبوهي از مواد شيميايي گوناگون فراگرفته اند كه در زهرآگين بودن و آسيب رسان بودن بيشتر آن شكي نداريم و از بسياري از آنها نيز نمي توانيم دوري كنيم .

 بي گمان هر اندازه كه بتوانيم از بكارگيري مواد شيميايي در زندگي خود پرهيز كنيم يا از رها شدن اين گونه مواد در طبيعت جلوگيري كنيم ، به سلامت خود و  محيط زيست كمك كرده ايم . اما به نظر مي رسند كه در اين راهكارهاي پيش گيرانه ، كه تا كنون كارآمدي چشم گيري از خود نشان نداده اند ، بايد به راه هايي كارآمدتري نيز بيانديشيم كه دگرگوني در شيوه ي ساختن مواد شيميايي در راستاي كاهش آسيب هاي آنها به آدمي و محيط زيست يكي از اين راهها است . امروزه ، از اين رويكرد نوين با  عنوان شيمي سبز ياد مي شود كه عبارت است از : طراحي فراورده ها و فرايندهاي شيميايي كه بكارگيري و توليد مواد آسيب رسان به سلامت آدمي و محيط زيست را كاهش مي دهند يا از بين مي برند .

در علم شيمي انقلابي سبز در حال شكل گيري است كه نه تنها پايداري محيط و سود بخشي را به ارمغان مي آورد بلكه از خطرات فاجعه هاي صنعتي نيز مي كاهد .

آقاي رابين راجرز (Robin Rogers) پژوهشگر و رئيس مركز توليد صنعتي سبز دانشگاه آلاماها مي گويد : شيمي سبز  عبارت است از ساخت توليد محصولات جديد با استفاده از روشهاي جديدي كه متناسب با اهداف سه گانه محيط زيست پايدار – اقتصاد پايدار – و جامعه پايدار است .

شيميدان سبز كيست؟

شيميدانهايي كه در اين حوزه فعاليت دارند شيميدان سبز ناميده اند . توليد صنعتي اكثر محصولات بر اساس فعل و انفعالات شيمايي صورت مي گيرد . در دهه گذشته بعضي از شيميدانها نگرش جديد خود را متوجه توليد محصولات بدون استفاده از مواد سمي و بدون ايجاد سمپاندهاي سمي نموده اند . شيمي سبز يكنوع شستشوي سبز تكنولوژي قديمي نمي باشد بكله جزء اصلي تكنولوژي هاي جديديست كه كارائي بهتري دارند ، ارزان تمام مي شوند و به انرژي كمتري احتياج دارند . در يك دوره كامل توليد از ماده خام گرفته تا ايجاد محصول نهايي آلودگي كمتري ايجاد مي نمايند و اضافه نمود كه در واقع انقلاب تكنولوژي سبز برابر با انقلاب صنعتي مي باشد .

مزاياي شيمي سبز:

مملکت های پيشرفته و مملکت های در حال رشد از اين تكنولوژي استفاده مي نمايند چون شيمي و تكنولوژي سبز ارزانتر و بهتر مي باشد و خواهند توانست در اقتصاد جهاني رقابت پذيرتر شوند و نيز سهم خود را در بازار افزايش دهند .

دكتر كيت سلان (SeddoN Kenneth) استاد شيمي دانشگاه كوئينز از بلفاست ايرلند اظهار مي دارد كه شميي سبز موضوعي است بين المللي زيرا ، پراكنده شدن آلودگيها و سموم پيامدهاي جهاني دارد بطور مثال نشت بنزين كه در سال 2005 در چين براثر واژگوني كشتي هاي بنزين اتفاق افتاد كه به آب آشاميدني ميليونها نفر را آلوده كرد و اين آب آلوده بطرف شرقي ترين بخش روسيه و رودخانه Songhua  روان شد .

بنا به اظهارات دانشمندان انگيسي ايجاد نكردن آلودگي يكي از دلايلي است كه ممالك در حال رشد به دنبال استفاده از شيمي سبز مي باشند و دليل ديگر عدم توانايي چنين ممالكي در پرداخت روز افزون بهاي گزاف مواد پتروشيمي است .

استفاده از شيمي سبز بطور كلي با كاستن  مخارج همراه است كه كاهش يا حذف كلي مخارج از بين بردن سمپاندهاي شيمي جزئي از آن است و نيز پيامدها و اثرات منفي زيست محيطي را به حداقل ميرساند اين دو عامل ، رقابت پذيري بيشتري براي كمپانيها ايجاد مي نمايد . شيمي سبز كره زمين را تميز تر ، ايمن تر و بهره ورتر مي نمايد . شيمي سبز وجدان علم شيمي و راه آينده است . يك شبكه جهاني از طرفداران محيط زيست و شيميدانهاي سبز بوجود آمده است كه براي شيمي سبز اصولي را مبتني بر 12 اصل مشخص نموده اند .

اصول 12 گانه شيمي سبز

در شماره گذشته با شيمي سبز آشنا شديم ، گفتيم شيمي سبز عبارت است از : طراحي فرآورده ها و فرايندهاي شيميايي كه بكارگيري و توليد مواد آسيب رسان به سلامت آدمي و محيط زيست را كاهش مي دهند يا از بين مي برند .

همچنين گفتم شبكه جهاني كه از طرفداران شيمي سبز به وجود آمده است دوازده اصل را براي شيمي سبز مشخص نموده اند ، اكنون به بيان اين اصول مي پردازيم :

اصل اول : پيشگيري از توليد فراورده هاي بيهوده

بهتر است كه از ساخت و توليد زباله و سمپادهاي سمي جلوگيري شود تا اينكه پس از توليد بفكري ضرر نمودن سمپاندهاي سمي و يا پاك كردن محيط از آنها شد .

اصل دوم : اقتصاد دائم ، افزايش بهره وري از اتم

اقتصاد دائم به اين مفهوم است كه بازده واكنش هاي شيميايي را افزايش دهيم . يعني طراحي واكنش هاي شيميايي به شيوه اي باشند كه فراورده هاي نهايي بيشتري بدست آيد بهتر با كاهش ميزان توليد فراورده هاي بيهوده و مازاد بازده واكنش ها را افزايش دهيم .

اصل سوم : طراحي فرايندهاي شيميايي كم آسيب تر

 شيمي دان ها در جايي كه امكان دارد بايد شيوه ايي را طراحي كنند تا موادي را بكار برد يا توليد كند كه اثرات سود كمتري براي آدمي يا محيط زيست داشته باشند . اغلب براي يك واكنش شيميايي مواد اوليه گوناگوني وجود دارد كه از ميان آن ها
 مي توان مناسب ترين را برگزيد .

 اصل چهارم : طراحي مواد و فراورده هاي شيمايي سالم تر

فراورده هاي شيميايي بايد به گونه اي طراحي شوند كه با وجود كاهش خطر سميت كار خود را به خوبي انجام دهند .

فراورده هاي جديد را مي توان به گونه اي طراحي كرد كه سالم تر باشند و در همان حال ، كار در نظر گرفته شده براي آنها را به خوبي انجام دهند .

اصل پنجم : بهره گيري از حلال ها و شرايط واكنشي سالم تر

بهره گيري از مواد كمكي ( مانند حلال ها و عامل هاي جدا كننده) تا جايي كه امكان دارد به كمترين اندازه برسد و زماني كه بكار مي روند از گونه هاي كم آسيب رسان باشند .

اصل ششم : افزايش بازده انرژي

در فرآيندهاي شيميايي ، روشهاي ساخت و جداسازي تا جايي كه امكان دارد به
گونه ايي طراحي شده اند كه نياز به انرژي را كاهش دهند و در انتهاي واكنش به انرژي بيشتري دست يابيم .

اصل هفتم : بهره گيري از مواد اوليه باز گرداني شدني

واكنشهاي شيميايي بايد به گونه ايي طراحي شوند تا از مواد اوليه ي كه قابليت بازگرداني دارند بهره بگيريم .

اصل هشتم : پرهيز از مشتقهاي شيميايي

مشتق گرفتن ( مانند بهره گيري از گروه هاي محدود كننده يا تغيير هاي شيميايي و فيزيكي گذرا) بايد كاهش يابد ، زيرا چنين مرحله هايي به واكنشگرهاي اضافي نياز دارند كه مي توانند فراورده هاي بيهوده توليد كنند .

اصل نهم : بهره گيري از كاتاليزگرها

كاتاليزگرها گزينشي بودن يك واكنش را افزايش مي دهند ؛ دماي مورد نياز را كاهش مي دهند ، واكنش هاي جانبي را به كمترين اندازه مي رسانند ،ميزان تبديل شدن واكنش گرها به فراورده هاي نهايي را افزايش مي دهند .

اصل دهم : طراحي براي تخريب پذير بودن محصولات

فراورده هاي شيميايي بايد به گونه اي طراحي شوند كه در پايان محصولات به صورتي باشند كه در طبيعت تخريب پذير باشند و در محيط زيست زياد نمانند وهر چه سريعتر تجزيه شوند .

اصل يازدهم : تخمين زمان واقعي يك واكنش براي پيشگيري از آلودگي

بسيار اهميت دارد كه پيشرفت يك واكنش را همواره پي گيري كنيم تا بدانيم چه هنگام واكنش  كامل مي شود زيرا پس از كامل شدن يك واكنش شيميايي
 فراورده هاي ناخواسته جانبي توليد مي شوند .

اصل دوازدهم : كاهش احتمالي روي دادهاي ناگوار

يك راه براي كاهش احتمال رويدادهاي شيميايي ناخواسته بهره گيري از واكنش گرها و حلال هايي است كه احتمال انفجار ، آتش سوزي و رها شدن ناخواسته ي مواد شيميايي را كاهش مي دهند . آسيب هاي مرتبط با اين روي دادها را مي توان به تغيير دادن حالت ( جامد ، مايع ، گاز ) يا تركيب واكنش گرها كاهش داد .

كوشش ها و دستاوردهاي شيمي سبز

شيميدانهاي سبز در پي آن هستند كه روندهاي شيميايي سالم تري را جايگزين روندهاي كنوني كننده يا با جاگزين كردن مواد اوليه ي سالم تر يا انجام دادن
واكنش ها در شرايط ايمن تر ، فراورده هاي سالم تري را به جامعه هديه دهند . برخي از آنها مي كوشند شيمي را به زيست شيمي نزديك كند ، چرا كه واكنش هاي زيست شيميايي طي ميليونها سال رخ داده اند و چه براي آدمي و چه براي محيط زيست ف چالش هاي نگران كننده ي بوجود نياورده اند . بسياري از اين واكنش ها در شرايط طبيعي رخ مي دهند و به دما و فشار بالا نياز ندارند . فراورده هاي آنها نيز به آساني به چرخه ي مواد باز مي گردند و فراورده هاي جانبي آنها براي جانداران سودمند هستند الگو برداري از اين واكنش ها مي تواند چالش هاي بهداشتي و زيست محيطي كنوني را كاهش دهد .

گروه ديگري از شيميدانهاي سبز مي كوشند بهره وري اتمي را افزايش دهند . طي كي واكنش شيميايي شماري اتم آغازگر واكنش هستند و در پايان بيشتر واكنش ها با فراورده هايي روبه رو هستيم كه شمار اتم هاي آن از شمار همه ي اتم هاي آغازين بسيار كم تر است . بي گمان آن اتم ها نابود شده اند ، بلكه در ساختمان فراورده هاي بيهوده و اغلب آسيب رسان به طبيعت رها مي شوند و سلامت آدمي و ديگر جانداران را به چالش مي كشند . هر چه بتوانيم اتم هاي بيشتري در فراورده ها بگنجانيم ، هم به سلامت خود و محيط زيست كمك كرده ايم و هم از هدر رفتن اتم هايي كه بعنوان مواد اوليه براي آنها پول پرداخت كرده ايم جلوگيري مي كنيم .

باز طراحي واكنش هاي شيميايي نيز راه كار سودمند ديگري براي پيشگيري از پيامدهاي ناگوار مواد شيميايي است . در اين باز طراحي ها از مواد آغازگر سالمتر بهره مي گيرند يا روند هايي را طراحي مي كنند كه با واكنش هاي مرحله اي كمتر به فراورده برسند . همچنين روند هايي را طراحي مي كنند كه به مواد كمكي كمتر ، بويژه حلال هاي شيميايي ، نياز دارند . گاهي نيز واكنش هاي زيست شيمي و شيمي را به هم گره مي زنند و روند سالمتر شدن آنها بينجامد و اثرهاي جانبي آن ها بر روندهاي زيست شناختي بدن ، تا جايي كه امكان دارد كاهش دهد .

نمونه هايي از دستاوردهاي شيميدانهاي سبز به شرح زير مي باشد :

1- سوخت هاي جايگزين سوختهاي فسيلي

2- تهيه پلاستيك هاي سبز و تجزيه پذير

3- باز طراحي واكنش هاي شيميايي

4- چند سازه هاي زيستي

نظر به اهميت حفظ محيط زيست از ضايعات مواد پليمري و ضرورت پرداختن به تحقيقات مرتبط با كاهش خطرات زيانبار آلودگي هاي ناشي از اين مواد در پژوهشگاه پليمر و پتروشيمي ايران ، كميته ايي بنام كميته ي سبر در اين پژوهشگاه تاسيس نموده است اهداف كلي خود را به صورت زير تدوين نموده است :

1- پيگيري و اجراي پروژه هاي بازيافت مواد پليمري

2- پيگيري واجزاي پروژ ه هاي پليمرهاي زيست تخريب پذير

3- تقويت نگرش پاسخگو بودن در برابر مسايل زيست محيطي

4- آشنا كردن دانشجويان با مسايل توسعه پايدار و حفاظت محيط زيست

5- بررسي و امكان جايگزيني حلال هاي آلي با آب در محصولات پليمري

6- كمك به تدوين استانداردهاي زيست محيطي

با توجه به اهداف فوق پروژه هاي سبز آغاز شد و با تلاش مستمر و پيگير شيميدانهاي سبز كشورمان به نتايج زير رسيديم اميد آن ميرود كه اين فعاليتها مستمر و مداوم بوده تا در پاكيزگي اين كره خاكي ، زمين قدمي برداشته باشيم .

- بالا بردن استحكام كيسه هاي پلاستيكي تهيه شده از ضايعات

- بازيابي مخلوط ضايعات پلي اتيلن ،پلي پروبيلن وپلي وينيل كلرايد به همراه كاغذ

- بازيابي و ساخت فيلمهاي راديولوژي

- بررسي و جايگزين آزبست (پشم شيشه ) با الياف پلميري در كامپيوزيستهاي سيمان

- بازيافت ضايعات PET ( بطريهاي نوشابه)

- بررسي مهاجرت افزودنيها ، پلاستيكهاي بسته بندي رايج در مواد غذايي دارويي

- بهينه سازي و استخراج و تهيه كينين و كيتوسان از پوست ميگو

- تهيه و ساخت ايميلنت بر پايه مرجان دريايي مورد استفاده در جراحي هاي ارتوپدي

- فرمولاسيون و تهيه پلي اتيلن زيست تخريب پذير بر پايه نشاسته .

باز طراحي و روندهاي شيميايي فرصت هاي تازه و بي شماري براي شيميدانها بوجود آورده است و هر شيميداني مي تواند به طراحي هر يك از واكنش هاي شناخته
 شده اي كه سالها در كارخانه ها يا آزمايشگاه هاي دانشگاه بكار گرفته مي شد ، در راستاي سالم كردن آن و كاهش هزينه ها و افزايش كار آمدي و بازده بپردازد . از اين رو به نظر مي رسد فرصتهايي كه براي شيميدانها طي تاريخ دراز و كهن اين دانش فراهم شده ، اكنون بار ديگر براي شيميدانهاي امروزي فراهم  شده است تا با ويرايش آن چه آنان در تاريخ شيمي به يادگار گذاشته اند ، يادگارهاي سالم تري باري آيندگان بر جاي گذارند .

mohamad بازدید : 303 پنجشنبه 24 بهمن 1392 نظرات (0)
                به نام خدا                    مهدی محمدیاری ملاصدرا 06  اقای سلامی                                                                                     حفره ی لایه اوزون 

خورشيد تنها ستاره منظومه شمسي مي باشد كه كرات وسيارات در اطراف آن مي چرخند و از انرژي آن استفاده مي كنند. زمين نيز يكي از كراتي است كه در أطراف خورشيد در حال حركت است. فاصله ميان زمين و خورشيد حدود 149800000كيلومتر مي باشد، كه در اين فاصله، زمين حدود 9^10×95/1 وات انرژي از خورشيد دريافت مي كند كه ما تنها كسري از آن(0000002/0) را استفاده مي كنيم. نور خورشيد 27/8 دقيقه طول مي كشد كه به زمين برسد. از صد در صد نوري كه به زمين مي تابد تنها 30% آن بر اثر ذرات و مولكول هاي موجود در لايه هاي بالايي منعكس مي شوند بقيّه آن ها از لايه ها زمين عبور مي كنند و به زمين مي رسند. در واقع مي توان به جرأت گفت كه حدود99%انرژي كه به زمين مي رسد از خورشيد و بقيه آن از ماه و كرات ديگر مي باشد. نور سفيد خورشيد از ميلياردها ميليارد رنگ تشكيل شده است كه هر كدام از اين رنگ ها داراي طول موج و انرژي مخصوص به خود مي باشند، و ما هنگامي كه اين نور را تفكيك مي كنيم به هفت رنگ تجزيه مي شوند كه هر كدام از اين رنگ ها از ميلياردها رنگ تشكيل شده اند... پرتوهاي فوق بنفش داراي طول موج كوتاه و انرژي زياد مي باشند پرتوهاي فوق بنفش با انرژي زيادي كه دارند براي تمام موجودات زنده خطرناك مي باشند و موجب سرطان پوست يا آفتاب سوختگي مي شوند. خوشبختانه زمين در برابر اين پرتوي خطرناك، محافظي بنام لايه اوزون دارد كه از ورود پرتوهاي خطرناك به سطح زمين جلوگيري مي كند. قبل از آن كه به بحث درباره برخورد پرتوهاي فوق بنفش و مولكول ها اوزون بپردازيم ابتدا به اطلاعاتي درمورد اوزون مي پردازيم.

اوزون چيست؟

دانشمندان لايه ها زمين را به چهار قسمت تقسيم مي كنند:
1) تروپوسفر(كه نسبت به سطح دريا 12تا15 كيلومترارتفاع دارد).
2)استراتوسفر.
3)مزوسفر.
4)تروموسفر(خارجي ترين لايه زمين) مولكول اوزون(o3) از يك مولكول اكسيژن و يك اتم اكسيژن كه ناپايدار و واكنش پذير مي باشد، تشكيل شده است. پيوند ميان مولكول اكسيژن و اتم اكسيژن در مولكول اوزون بسيار ضعيف مي باشد و ممكن است با كوچك ترين برخورد از هم جدا و يا با دريافت كوچكترين انرژي به حالت اوليه خود برگردند. لايه اوزون در لايه استراتوسفر زمين قرار دارد. در شب ها به دليل عدم دسترسي به انرژي تابشي خورشيد، ضخامت لايه اوزون كمتر از ضخامت آن در روز ها مي باشد. هنگامي كه پرتوهاي فوق بنفش به مولكول ها اوزون برخورد مي كنند، پرتو هاي فوق ـ بنفش مقدار زيادي از انرژي خود را از دست مي دهند وبه پرتو هاي فرو سرخ تبديل مي شوند، و هم چنين بر اثر اين برخورد، مولكول اوزون به مولكول اكسيژن و اتم اكسيژن تبديل مي شود و با تابش مجدد نور خورشيد، مولكول اوزون دوباره پديدار مي شود. مولكول هاي اوزون هر چند كه براي ما مفيد هستند اما وجود آن ها در لايه تروپوسفر(لايه اي كه ما در آن زندگي مي كنيم) بسيار خطرناك مي باشند. نيتروژن هاي پراكسيد خارج شده از اگزوز موتورهاي ديزلي بر اثر تابش نور خورشيد(عمل فتو شيميايي) با مولكول هاي اكسيژن واكنش مي دهند و مولكول هاي اوزون را پديدار مي كنند. چون در مولكول هاي اوزون اتم هاي اكسيژن فعال (راديكالي) وجود دارد، تنفس آن، موجب اختلال در دستگاه تنفسي مي شود.
حفره اوزون تا سال 1980ميلادي از سوراخي لايه اوزون خبري نبود؛ اما در سال 1985م، دانشمندان از نازك شدن لايه اوزون در قطب جنوب خبر دادند. در آن زمان با تحقيقات انجام شده علت نابودي مولكول هاي اوزون را، گاز هاي cfc(كلر و فلوئور و كربن) مي دانستند. گاز هاي cfc بعنوان گازهاي خنك كننده در يخچال ها، كولرها و هم چنين در مواد پلاستيكي مورد استفاده قرار مي گيرند. در cfc ها اتم هاي كلر ناپايدار و واكنش پذير مي باشند و هنگامي كه گازهاي cfc به لايه هاي بالا مي روند، در لايه هاي بالا بر اثر برخورد با نور خورشيد، گازهاي كلر آزاد مي شوند. اتم هاي كلر در لايه استراتوسفر با مولكول هاي اوزون واكنش مي دهند.

هر اتم كلر به تنهايي مي تواند 100000 مولكول اوزون را از بين ببرد. به همين دليل در گستره جهاني، در سازمان ملل متحد، در معاهده اي بنام معاهده مونترال كشورها متعهد شدند كه از توليد و فروش گاز هاي cfc خودداري كنند، و هم چنين به كشورهاي فقير اين امكان را بدهند كه بجاي استفاده از گاز هاي cfc، از گاز هاي خنك كننده ديگري استفاده كنند. ما مي دانيم كه بيشترين كشور هاي صنعتي در نيم كره شمالي قرار دارند، پس چرا در قطب جنوب لايه اوزون سوراخ شده است؟! براي پاسخ به اين سوال، پژوهش هاي زيادي انجام شده است كه بعضي از اين پژوهش ها تاكنون در دست تحقيق است. اخيراً دانشمندان علت ايجاد حفره در لايه اوزون را گرداب هاي سنگين، كه در قطب جنوب جريان دارند، مي دانند در زمستان در طول شب هاي قطبي، نور خورشيد در تمام سطح قطب جنوب در دسترس نيست، به همين دليل در اين قطب در لايه استراتوسفر طوفان هاي سنگيني گسترش مي يابند كه به آن ها 'گرداب قطبي' (polar vortex) مي گويند. گرداب قطبي مي تواند ذرات سازنده هوا را تجزيه كند. اين گرداب ها باعث ايجاد ابرهاي سردي مي شوند كه بر فراز قطب جنوب جريان مي يابند كه به اين ابرها 'ابر استراتوسفر قطبي'(polar stratosphere cloud) مي گويند. اختصار آن psc است. Pscها بسيار سرد هستند و دماي آن ها حدود 80- سيلسيوس است. Psc از نيتريك اسيد تري هيدرات(nitric acid trihydrate) تشكيل شده است و با ابرهايي كه ما آن ها را در آسمان مي بينيم كاملاً متفاوتند. پس اين ابرهاي اسيدي مي توانند لايه اوزون را تخريب كنند. 'بنابراين با استناد به تحقيقات انجام يافته، موارد زير را مي توان از عوامل موثر در تخريب لايه اوزون دانست:
1) محور زمين به گونه اي مي باشد كه نور خورشيد به قطب شمال بيشتر از قطب جنوب مي تابد به همين دليل ضخامت لايه اوزون در قطب شمال بيشتر از ضخامت آن در قطب جنوب مي باشد(زيرا ما گفتيم كه پيوند ميان مولكول اكسيژن و اتم اكسيژن در مولكول اوزون بسيار ضعيف مي باشد و ممكن است با كوچك ترين برخورد از هم جدا ويا با دريافت كوچك ترين انرژي(مانند انرژي تابشي خورشيد) به حالت اوليه خود برگردند).

2) از مورد دوم نتيجه مي گيريم كه هواي قطب جنوب سردتر از هواي قطب شمال مي باشد، بنابراين هواي گرم هنگامي كه بر اثر جريان هايي به قطب جنوب مي روند، چون سبك مي باشند، به سمت بالا مي روند و موجب نابودي لايه هاي اوزون برفراز قطب جنوب مي شوند.

3) در زمستان نور خورشيد كاملاً در تمام سطح قطب جنوب در دسترس نمي باشد، و اين امر باعث كاهش دما و تشكيل ابرهاي psc مي شود.

4) ابرهاي psc اسيدي هستند و به همين دليل آن ها به لايه اوزون آسيب مي رسانند.

تعداد صفحات : 29

درباره ما
Profile Pic
داریوش سلامی ..................................................................................... کارشناسی ارشد شیمی فیزیک................................................................... دبیرشیمی ناحیه1رشت .......................................................................... .shimisalami@yahoo.com ................................................................ شیمی یکی از مهمترین علوم پایه است که نقش کلیدی در زندگی بشر امروزی دارد و هر جنبه از زندگی ما ارتباط نزدیکی با این علم دارد.
اطلاعات کاربری
  • فراموشی رمز عبور؟
  • نظرسنجی
    به سایت نمره بدهید.
    پیوندهای روزانه
    صفحات جداگانه
    آمار سایت
  • کل مطالب : 1015
  • کل نظرات : 183
  • افراد آنلاین : 11
  • تعداد اعضا : 461
  • آی پی امروز : 115
  • آی پی دیروز : 121
  • بازدید امروز : 148
  • باردید دیروز : 658
  • گوگل امروز : 1
  • گوگل دیروز : 1
  • بازدید هفته : 3,740
  • بازدید ماه : 3,740
  • بازدید سال : 71,460
  • بازدید کلی : 1,564,088
  • کدهای اختصاصی